Menu
July 7, 2019

Coproduction of KPC-18 and VIM-1 carbapenemases by Enterobacter cloacae: Implications for newer ß-lactam-ß-lactamase inhibitor combinations.

Enterobacter cloacae strain G6809 with reduced susceptibility to carbapenems was identified from a patient in a long-term acute care hospital in Kentucky. G6809 belonged to sequence type (ST) 88 and carried two carbapenemase genes, blaKPC-18 and blaVIM-1. Whole-genome sequencing localized blaKPC-18 to the chromosome and blaVIM-1 to a 58-kb plasmid. The strain was highly resistant to ceftazidime-avibactam. Insidious coproduction of metallo-ß-lactamase with KPC-type carbapenemase has implications for the use of next-generation ß-lactam-ß-lactamase inhibitor combinations. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019

Deciphering the streamlined genome of Streptomyces xiamenensis 318 as the producer of the anti-fibrotic drug candidate xiamenmycin.

Streptomyces xiamenensis 318, a moderate halophile isolated from a mangrove sediment, produces the anti-fibrotic compound xiamenmycin. The whole genome sequence of strain 318 was obtained through long-read single-molecule real-time (SMRT) sequencing, high-throughput Illumina HiSeq and 454 pyrosequencing technologies. The assembled genome comprises a linear chromosome as a single contig of 5,961,401-bp, which is considerably smaller than other reported complete genomes of the genus Streptomyces. Based on the antiSMASH pipeline, a total of 21?gene clusters were predicted to be involved in secondary metabolism. The gene cluster responsible for the biosynthesis of xiamenmycin resides in a strain-specific 61,387-bp genomic island belonging to the left-arm region. A core metabolic network consisting of 104 reactions that supports xiamenmycin biosynthesis was constructed to illustrate the necessary precursors derived from the central metabolic pathway. In accordance with the finding of a putative ikarugamycin gene cluster in the genome, the targeted chemical profiling of polycyclic tetramate macrolactams (PTMs) resulted in the identification of ikarugamycin. A successful genome mining for bioactive molecules with different skeletons suggests that the naturally minimized genome of S. xiamenensis 318 could be used as a blueprint for constructing a chassis cell with versatile biosynthetic capabilities for the production of secondary metabolites.


July 7, 2019

Purification and characterization of a novel milk-clotting metalloproteinase from Paenibacillus spp. BD3526.

In this study, a milk-clotting enzyme (MCE) isolated from Paenibacillus spp. BD3526 was purified and characterized. The MCE was purified 8.9-fold with a 10.11% recovery using ammonium sulfate precipitation and anion-exchange chromatography and the specific milk-clotting activity (MCA) reached 6791.73SU/mg. The enzyme was characterized as a 35kDa metalloproteinase, and the zymogen of which was encoded by a 1671bp gene named zinc metalloproteinase precursor (zmp) with a predicted molecular weight of 59.6kDa. The optimal temperature for MCA and proteolytic activity (PA) was 65°C and 60°C, respectively. The enzyme was stable over a pH range of 5.0-9.0 and at temperatures below 50°C. The MCA was completely inactivated when the enzyme was heated at 60°C for 30min, and the PA was totally inactivated for 20 and 10min when the enzyme was heated at 55°C and 60°C, respectively. The BD3526 enzyme was preferentially active towards ?-casein (?-CN) and ß-casein (ß-CN), as determined by sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE), whereas the hydrolysis of as-casein (as-CN) was slow and comparable to that caused by chymosin and asparatic acid proteinase from Rhizomucor miehei. The cleavage site of the metalloproteinase in ?-CN was located at the Met106-Ala107 bond, as determined by mass spectrometry analysis. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019

Whole genome sequence of the emerging oomycete pathogen Pythium insidiosum strain CDC-B5653 isolated from an infected human in the USA

Pythium insidiosum ATCC 200269 strain CDC-B5653, an isolate from necrotizing lesions on the mouth and eye of a 2-year-old boy in Memphis, Tennessee, USA, was sequenced using a combination of Illumina MiSeq (300 bp paired-end, 14 millions reads) and PacBio (10 Kb fragment library, 356,001 reads). The sequencing data were assembled using SPAdes version 3.1.0, yielding a total genome size of 45.6 Mb contained in 8992 contigs, N50 of 13 Kb, 57% G + C content, and 17,867 putative protein-coding genes. This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession JRHR00000000.


July 7, 2019

Complete genome sequence of Corynebacterium glutamicum CP, a Chinese l-leucine producing strain.

Here, we report the complete genome sequence of Corynebacterium glutamicum CP, an industrial l-leucine producing strain in China. The whole genome consists of a circular chromosome and a plasmid. The comparative genomics analysis shows that there are many mutations in the key enzyme coding genes relevant to l-leucine biosynthesis compared to C. glutamicum ATCC 13032. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019

Complete genome sequence of Clostridium butyricum JKY6D1 isolated from the pit mud of a Chinese flavor liquor-making factory.

Clostridium butyricum is an important fragrance-producing bacterium in the traditional Chinese flavor liquor-making industry. Here the complete genome sequence of C. butyricum JKY6D1 isolated from the pit mud of a Chinese flavor liquor-making factory is presented. The genome is 4,618,327bp with the GC content of 28.74% and a plasmid of 8060bp. This is the first complete genome sequence of C. butyricum strains available so far. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019

Complete genome of biodegradable plastics-decomposing Roseateles depolymerans KCTC 42856(T) (=61A(T)).

Roseateles depolymerans is a Gram-negative, rod-shaped, flagellated, obligately aerobic, photosynthetic bacterium that was isolated from the Hanamuro River, Ibaraki Prefecture, Japan. Here, we report the complete genome of R. depolymerans KCTC 42856(T) (=61A(T)=DSM 11813(T)=CCUG 48747(T)=NCIMB 13588(T)), which consists of 5,681,722bp (G+C content of 66.57%) with a single chromosome, 4,773 protein-coding genes, 57 tRNAs and 4 rRNA operons. Several genes related to degradation of aliphatic and aromatic polymers were detected in the genome that help explain how the strain mediates decomposition of biodegradable plastics into fragments which are then assimilated and subsequently metabolized by microbial cells. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019

Complete genome sequence of Arthrobacter alpinus ERGS4:06, a yellow pigmented bacterium tolerant to cold and radiations isolated from Sikkim Himalaya.

Arthrobacter alpinus ERGS4:06, a yellow pigmented bacterium which exhibited tolerance to cold and UV radiations was isolated from the glacial stream of East Rathong glacier in Sikkim Himalaya. Here we report the 4.3 Mb complete genome assembly that has provided the basis for potential role of pigments as a survival strategy to combat stressed environment of cold and high UV-radiation and additionally the ability to produce cold active industrial enzymes. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019

Complete genome sequence of Klebsiella pneumoniae J1, a protein-based microbial flocculant-producing bacterium.

Klebsiella pneumoniae J1 is a Gram-negative strain, which belongs to a protein-based microbial flocculant-producing bacterium. However, little genetic information is known about this species. Here we carried out a whole-genome sequence analysis of this strain and report the complete genome sequence of this organism and its genetic basis for carbohydrate metabolism, capsule biosynthesis and transport system. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019

Complete genome sequence of the Aneurinibacillus soli CB4(T) from soil of mountain.

Aneurinibacillus soli CB4(T) is a Gram-positive, motile rods and strictly aerobic bacterium. Here we present the 4.1-Mb genome sequence of the type strain of A. soli CB4(T), which consists a chromosome for the total 4,116,770bp with a G+C content of 45.9mol%. Genes related to diverse secondary metabolites were detected in this genome. The genomic data is expected to understand the possibility of industrial and commercial use by strain CB4(T). Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019

Streptomyces thermoautotrophicus does not fix nitrogen.

Streptomyces thermoautotrophicus UBT1 has been described as a moderately thermophilic chemolithoautotroph with a novel nitrogenase enzyme that is oxygen-insensitive. We have cultured the UBT1 strain, and have isolated two new strains (H1 and P1-2) of very similar phenotypic and genetic characters. These strains show minimal growth on ammonium-free media, and fail to incorporate isotopically labeled N2 gas into biomass in multiple independent assays. The sdn genes previously published as the putative nitrogenase of S. thermoautotrophicus have little similarity to anything found in draft genome sequences, published here, for strains H1 and UBT1, but share >99% nucleotide identity with genes from Hydrogenibacillus schlegelii, a draft genome for which is also presented here. H. schlegelii similarly lacks nitrogenase genes and is a non-diazotroph. We propose reclassification of the species containing strains UBT1, H1, and P1-2 as a non-Streptomycete, non-diazotrophic, facultative chemolithoautotroph and conclude that the existence of the previously proposed oxygen-tolerant nitrogenase is extremely unlikely.


July 7, 2019

Clonal Complex 17 group B Streptococcus strains causing invasive disease in neonates and adults originate from the same genetic pool.

A significant proportion of group B Streptococcus (GBS) neonatal disease, particularly late-onset disease, is associated with strains of serotype III, clonal complex (CC) 17. CC17 strains also cause invasive infections in adults. Little is known about the phylogenetic relationships of isolates recovered from neonatal and adult CC17 invasive infections. We performed whole-genome-based phylogenetic analysis of 93 temporally and geographically matched CC17 strains isolated from both neonatal and adult invasive infections in the metropolitan region of Toronto/Peel, Canada. We also mined the whole-genome data to reveal mobile genetic elements carrying antimicrobial resistance genes. We discovered that CC17 GBS strains causing neonatal and adult invasive disease are interspersed and cluster tightly in a phylogenetic tree, signifying that they are derived from the same genetic pool. We identified limited variation due to recombination in the core CC17 genome. We describe that loss of Pilus Island 1 and acquisition of different mobile genetic elements carrying determinants of antimicrobial resistance contribute to CC17 genetic diversity. Acquisition of some of these mobile genetic elements appears to correlate with clonal expansion of the strains that possess them. Our results provide a genome-wide portrait of the population structure and evolution of a major disease-causing clone of an opportunistic pathogen.


July 7, 2019

Plasmid characterization and chromosome analysis of two netF+ Clostridium perfringens isolates associated with foal and canine necrotizing enteritis.

The recent discovery of a novel beta-pore-forming toxin, NetF, which is strongly associated with canine and foal necrotizing enteritis should improve our understanding of the role of type A Clostridium perfringens associated disease in these animals. The current study presents the complete genome sequence of two netF-positive strains, JFP55 and JFP838, which were recovered from cases of foal necrotizing enteritis and canine hemorrhagic gastroenteritis, respectively. Genome sequencing was done using Single Molecule, Real-Time (SMRT) technology-PacBio and Illumina Hiseq2000. The JFP55 and JFP838 genomes include a single 3.34 Mb and 3.53 Mb chromosome, respectively, and both genomes include five circular plasmids. Plasmid annotation revealed that three plasmids were shared by the two newly sequenced genomes, including a NetF/NetE toxins-encoding tcp-conjugative plasmid, a CPE/CPB2 toxins-encoding tcp-conjugative plasmid and a putative bacteriocin-encoding plasmid. The putative beta-pore-forming toxin genes, netF, netE and netG, were located in unique pathogenicity loci on tcp-conjugative plasmids. The C. perfringens JFP55 chromosome carries 2,825 protein-coding genes whereas the chromosome of JFP838 contains 3,014 protein-encoding genes. Comparison of these two chromosomes with three available reference C. perfringens chromosome sequences identified 48 (~247 kb) and 81 (~430 kb) regions unique to JFP55 and JFP838, respectively. Some of these divergent genomic regions in both chromosomes are phage- and plasmid-related segments. Sixteen of these unique chromosomal regions (~69 kb) were shared between the two isolates. Five of these shared regions formed a mosaic of plasmid-integrated segments, suggesting that these elements were acquired early in a clonal lineage of netF-positive C. perfringens strains. These results provide significant insight into the basis of canine and foal necrotizing enteritis and are the first to demonstrate that netF resides on a large and unique plasmid-encoded locus.


July 7, 2019

Genomic and metagenomic analysis of microbes in a soil environment affected by the 2011 Great East Japan Earthquake tsunami.

The Great East Japan Earthquake of 2011 triggered large tsunami waves, which flooded broad areas of land along the Pacific coast of eastern Japan and changed the soil environment drastically. However, the microbial characteristics of tsunami-affected soil at the genomic level remain largely unknown. In this study, we isolated microbes from a soil sample using general low-nutrient and seawater-based media to investigate microbial characteristics in tsunami-affected soil.As expected, a greater proportion of strains isolated from the tsunami-affected soil than the unaffected soil grew in the seawater-based medium. Cultivable strains in both the general low-nutrient and seawater-based media were distributed in the genus Arthrobacter. Most importantly, whole-genome sequencing of four of the isolated Arthrobacter strains revealed independent losses of siderophore-synthesis genes from their genomes. Siderophores are low-molecular-weight, iron-chelating compounds that are secreted for iron uptake; thus, the loss of siderophore-synthesis genes indicates that these strains have adapted to environments with high-iron concentrations. Indeed, chemical analysis confirmed the investigated soil samples to be rich in iron, and culture experiments confirmed weak cultivability of some of these strains in iron-limited media. Furthermore, metagenomic analyses demonstrated over-representation of denitrification-related genes in the tsunami-affected soil sample, as well as the presence of pathogenic and marine-living genera and genes related to salt-tolerance.Collectively, the present results would provide an example of microbial characteristics of soil disturbed by the tsunami, which may give an insight into microbial adaptation to drastic environmental changes. Further analyses on microbial ecology after a tsunami are envisioned to develop a deeper understanding of the recovery processes of terrestrial microbial ecosystems.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.