Menu
July 7, 2019

Complete genome sequence of Celeribacter marinus IMCC12053(T), the host strain of marine bacteriophage P12053L.

Isolated from coastal seawater from Yellow Sea of Korea, Celeribacter marinus IMCC12053 was used as the host bacterium for bacteriophage P12053L. Here we report the complete genome sequence of strain IMCC12053 for further study of the marine bacteriophage P12053L functional genes. Single molecule real-time technology (PacBio RSII) was used for the single circular chromosome that is 3,096,705 base pairs in length and the GC content is 56.24%. It contains 3155 ORFs with 45 tRNAs and 6 rRNAs genes. N(6)-methyladenosine patterns were also investigated for 32 unmethylated genes and intergenic regions that covered many regulators and phage genes as well as ribosomal RNA genes and tRNA genes. Cryptic N(4)-methylcytosine pattern was investigated to speculate GpC methylase activity throughout the genome. Comparative genomics with other Celeribacter genomes were carried out for polyaromatic hydrocarbon degradation, but there were no aromatic ring oxygenases in IMCC12053 when compared to Celeribacter indicus P73. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019

Complete genome sequence of Agarivorans gilvus WH0801(T), an agarase-producing bacterium isolated from seaweed.

Agarivorans gilvus WH0801(T), an agarase-producing bacterium, was isolated from the surface of seaweed. Here, we present the complete genome sequence, which consists of one circular chromosome of 4,416,600bp with a GC content of 45.9%. This genetic information will provide insight into biotechnological applications of producing agar for food and industry. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019

OxyR-dependent formation of DNA methylation patterns in OpvABOFF and OpvABON cell lineages of Salmonella enterica.

Phase variation of the Salmonella enterica opvAB operon generates a bacterial lineage with standard lipopolysaccharide structure (OpvAB(OFF)) and a lineage with shorter O-antigen chains (OpvAB(ON)). Regulation of OpvAB lineage formation is transcriptional, and is controlled by the LysR-type factor OxyR and by DNA adenine methylation. The opvAB regulatory region contains four sites for OxyR binding (OBSA-D), and four methylatable GATC motifs (GATC1-4). OpvAB(OFF) and OpvAB(ON) cell lineages display opposite DNA methylation patterns in the opvAB regulatory region: (i) in the OpvAB(OFF) state, GATC1 and GATC3 are non-methylated, whereas GATC2 and GATC4 are methylated; (ii) in the OpvAB(ON) state, GATC2 and GATC4 are non-methylated, whereas GATC1 and GATC3 are methylated. We provide evidence that such DNA methylation patterns are generated by OxyR binding. The higher stability of the OpvAB(OFF) lineage may be caused by binding of OxyR to sites that are identical to the consensus (OBSA and OBSc), while the sites bound by OxyR in OpvAB(ON) cells (OBSB and OBSD) are not. In support of this view, amelioration of either OBSB or OBSD locks the system in the ON state. We also show that the GATC-binding protein SeqA and the nucleoid protein HU are ancillary factors in opvAB control.© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.


July 7, 2019

Complete genome sequence of Acinetobacter baumannii XH386 (ST208), a multi-drug resistant bacteria isolated from pediatric hospital in China.

Acinetobacter baumannii is an important bacterium that emerged as a significant nosocomial pathogen worldwide. The rise of A. baumannii was due to its multi-drug resistance (MDR), while it was difficult to treat multi-drug resistant A. baumannii with antibiotics, especially in pediatric patients for the therapeutic options with antibiotics were quite limited in pediatric patients. A. baumannii ST208 was identified as predominant sequence type of carbapenem resistant A. baumannii in the United States and China. As we knew, there was no complete genome sequence reproted for A. baumannii ST208, although several whole genome shotgun sequences had been reported. Here, we sequenced the 4087-kilobase (kb) chromosome and 112-kb plasmid of A. baumannii XH386 (ST208), which was isolated from a pediatric hospital in China. The genome of A. baumannii XH386 contained 3968 protein-coding genes and 94 RNA-only encoding genes. Genomic analysis and Minimum inhibitory concentration assay showed that A. baumannii XH386 was multi-drug resistant strain, which showed resistance to most of antibiotics, except for tigecycline. The data may be accessed via the GenBank accession number CP010779 and CP010780.


July 7, 2019

Long read and single molecule DNA sequencing simplifies genome assembly and TAL effector gene analysis of Xanthomonas translucens.

The species Xanthomonas translucens encompasses a complex of bacterial strains that cause diseases and yield loss on grass species including important cereal crops. Three pathovars, X. translucens pv. undulosa, X. translucens pv. translucens and X. translucens pv.cerealis, have been described as pathogens of wheat, barley, and oats. However, no complete genome sequence for a strain of this complex is currently available.A complete genome sequence of X. translucens pv. undulosa strain XT4699 was obtained by using PacBio long read, single molecule, real time (SMRT) DNA sequences and Illumina sequences. Draft genome sequences of nineteen additional X. translucens strains, which were collected from wheat or barley in different regions and at different times, were generated by Illumina sequencing. Phylogenetic relationships among different Xanthomonas strains indicates that X. translucens are members of a distinct clade from so-called group 2 xanthomonads and three pathovars of this species, undulosa, translucens and cerealis, represent distinct subclades in the group 1 clade. Knockout mutation of type III secretion system of XT4699 eliminated the ability to cause water-soaking symptoms on wheat and barley and resulted in a reduction in populations on wheat in comparison to the wild type strain. Sequence comparison of X. translucens strains revealed the genetic variation on type III effector repertories among different pathovars or within one pathovar. The full genome sequence of XT4699 reveals the presence of eight members of the Transcription-Activator Like (TAL) effector genes, which are phylogenetically distant from previous known TAL effector genes of group 2 xanthomonads. Microarray and qRT-PCR analyses revealed TAL effector-specific wheat gene expression modulation.PacBio long read sequencing facilitates the assembly of Xanthomonas genomes and the multiple TAL effector genes, which are difficult to assemble from short read platforms. The complete genome sequence of X. translucens pv. undulosa strain XT4699 and draft genome sequences of nineteen additional X. translucens strains provides a resource for further genetic analyses of pathogenic diversity and host range of the X. translucens species complex. TAL effectors of XT4699 strain play roles in modulating wheat host gene expressions.


July 7, 2019

Complete genome of brown algal polysaccharides-degrading Pseudoalteromonas issachenkonii KCTC 12958(T) (=KMM 3549(T)).

Pseudoalteromonas issachenkonii is a Gram-negative, rod-shaped, flagellated, aerobic, chemoorganotrophic marine bacterium that was isolated from the thallus of Fucus evanescens (marine brown macroalgae) sampled from the Kraternaya Bight of the Kurile Islands in the Pacific Ocean. Here, we report the complete genome of P. issachenkonii KCTC 12958(T) (=KMM 3549(T)=LMG 19697(T)=CIP 106858(T)), which consists of 4,131,541bp (G+C content of 40.3%) with two chromosomes, 3538 protein-coding genes, 102 tRNAs and 8 rRNA operons. Several genes related to glycoside hydrolases, proteases, and bacteriolytic- and hemolytic activities were detected in the genome that help explain how the strain mediates degradation of algal cell wall and decomposes algal polysaccharides into industrially applicable products. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019

Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: A randomized trial in children from Bangladesh

Background Antibiotic resistance is rising in important bacterial pathogens. Phage therapy (PT), the use of bacterial viruses infecting the pathogen in a species-specific way, is a potential alternative. Method T4-like coliphages or a commercial Russian coliphage product or placebo was orally given over 4 days to Bangladeshi children hospitalized with acute bacterial diarrhea. Safety of oral phage was assessed clinically and by functional tests; coliphage and Escherichia coli titers and enteropathogens were determined in stool and quantitative diarrhea parameters (stool output, stool frequency) were measured. Stool microbiota was studied by 16S rRNA gene sequencing; the genomes of four fecal Streptococcus isolates were sequenced. Findings No adverse events attributable to oral phage application were observed (primary safety outcome). Fecal coliphage was increased in treated over control children, but the titers did not show substantial intestinal phage replication (secondary microbiology outcome). 60% of the children suffered from a microbiologically proven E. coli diarrhea; the most frequent diagnosis was ETEC infections. Bacterial co-pathogens were also detected. Half of the patients contained phage-susceptible E. coli colonies in the stool. E. coli represented less than 5% of fecal bacteria. Stool ETEC titers showed only a short-lived peak and were otherwise close to the replication threshold determined for T4 phage in vitro. An interim analysis after the enrollment of 120 patients showed no amelioration in quantitative diarrhea parameter by PT over standard care (tertiary clinical outcome). Stool microbiota was characterized by an overgrowth with Streptococcus belonging to the Streptococcus gallolyticus and Streptococcus salivarius species groups, their abundance correlated with quantitative diarrhea outcome, but genome sequencing did not identify virulence genes. Interpretation Oral coliphages showed a safe gut transit in children, but failed to achieve intestinal amplification and to improve diarrhea outcome, possibly due to insufficient phage coverage and too low E. coli pathogen titers requiring higher oral phage doses. More knowledge is needed on in vivo phage–bacterium interaction and the role of E. coli in childhood diarrhea for successful PT. Funding The study was supported by a grant from Nestlé Nutrition and Nestlé Health Science. The trial was registered with Identifier NCT00937274 at ClinicalTrials.gov.


July 7, 2019

Complete genome sequence of Staphylococcus equorum KS1039 isolated from Saeu-jeotgal, Korean high-salt-fermented seafood.

Staphylococcus equorum KS1039 was isolated from a form of traditional Korean high-salt-fermented seafood called Saeu-jeotgal, and exhibited growth at a NaCl (w/v) concentration of 25%. Comparative genome analyses with two other strains revealed the presence of two potassium voltage-gated channel genes uniquely in KS1039, which might be involved in salt tolerance. This first complete genome sequence of the species will increase our understanding of the genetic factors allowing it to be safely consumed by humans and to inhabit high-salt environments. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019

In planta comparative transcriptomics of host-adapted strains of Ralstonia solanacearum.

Background. Ralstonia solanacearum is an economically important plant pathogen with an unusually large host range. The Moko (banana) and NPB (not pathogenic to banana) strain groups are closely related but are adapted to distinct hosts. Previous comparative genomics studies uncovered very few differences that could account for the host range difference between these pathotypes. To better understand the basis of this host specificity, we used RNAseq to profile the transcriptomes of an R. solanacearum Moko strain and an NPB strain under in vitro and in planta conditions. Results. RNAs were sequenced from bacteria grown in rich and minimal media, and from bacteria extracted from mid-stage infected tomato, banana and melon plants. We computed differential expression between each pair of conditions to identify constitutive and host-specific gene expression differences between Moko and NPB. We found that type III secreted effectors were globally up-regulated upon plant cell contact in the NPB strain compared with the Moko strain. Genes encoding siderophore biosynthesis and nitrogen assimilation genes were highly up-regulated in the NPB strain during melon pathogenesis, while denitrification genes were up-regulated in the Moko strain during banana pathogenesis. The relatively lower expression of oxidases and the denitrification pathway during banana pathogenesis suggests that R. solanacearum experiences higher oxygen levels in banana pseudostems than in tomato or melon xylem. Conclusions. This study provides the first report of differential gene expression associated with host range variation. Despite minimal genomic divergence, the pathogenesis of Moko and NPB strains is characterized by striking differences in expression of virulence- and metabolism-related genes.


July 7, 2019

Complete genome sequence of Helicobacter pylori strain 7C isolated from a Mexican patient with chronic gastritis.

Helicobacter pylori-induced gastritis is a risk factor for developing gastric pathologies. Here, we report the complete genome sequence of a multidrug-resistant H. pylori strain isolated from a chronic gastritis patient in Mexico City, Mexico. Nonvirulent VacA and cag-pathogenicity island (PAI) genotypes were found, but the presence of a potential mobilizable plasmid carrying an IS605 element is of outstanding interest. Copyright © 2016 Mucito-Varela et al.


July 7, 2019

In vitro selection of miltefosine resistance in promastigotes of Leishmania donovani from Nepal: genomic and metabolomic characterization.

In this study, we followed the genomic, lipidomic and metabolomic changes associated with the selection of miltefosine (MIL) resistance in two clinically derived Leishmania donovani strains with different inherent resistance to antimonial drugs (antimony sensitive strain Sb-S; and antimony resistant Sb-R). MIL-R was easily induced in both strains using the promastigote-stage, but a significant increase in MIL-R in the intracellular amastigote compared to the corresponding wild-type did not occur until promastigotes had adapted to 12.2 µM MIL. A variety of common and strain-specific genetic changes were discovered in MIL-adapted parasites, including deletions at the LdMT transporter gene, single-base mutations and changes in somy. The most obvious lipid changes in MIL-R promastigotes occurred to phosphatidylcholines and lysophosphatidylcholines and results indicate that the Kennedy pathway is involved in MIL resistance. The inherent Sb resistance of the parasite had an impact on the changes that occurred in MIL-R parasites, with more genetic changes occurring in Sb-R compared with Sb-S parasites. Initial interpretation of the changes identified in this study does not support synergies with Sb-R in the mechanisms of MIL resistance, though this requires an enhanced understanding of the parasite’s biochemical pathways and how they are genetically regulated to be verified fully. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.


July 7, 2019

Tigecycline resistance in clinical isolates of Enterococcus faecium is mediated by an upregulation of plasmid-encoded tetracycline determinants tet(L) and tet(M).

Tigecycline represents one of the last-line therapeutics to combat multidrug-resistant bacterial pathogens, including VRE and MRSA. The German National Reference Centre for Staphylococci and Enterococci has received 73 tigecycline-resistant Enterococcus faecium and Enterococcus faecalis isolates in recent years. The precise mechanism of how enterococci become resistant to tigecycline remains undetermined. This study documents an analysis of the role of efflux pumps in tigecycline resistance in clinical isolates of Enterococcus spp.Various tigecycline MICs were found for the different isolates analysed. Tigecycline-resistant strains were analysed with respect to genome and transcriptome differences by means of WGS and RT-qPCR. Genes of interest were cloned and expressed in Listeria monocytogenes for verification of their functionality.Detailed comparative whole-genome analyses of three isogenic strains, showing different levels of tigecycline resistance, revealed the major facilitator superfamily (MFS) efflux pump TetL and the ribosomal protection protein TetM as possible drug resistance proteins. Subsequent RT-qPCR confirmed up-regulation of the respective genes. A correlation of gene copy number and level of MIC was inferred from further qPCR analyses. Expression of both tet(L) and tet(M) in L. monocytogenes unequivocally demonstrated the potential to increase tigecycline MICs upon acquisition of either locus.Our results indicate that increased expression of two tetracycline resistance determinants, a tet(L)-encoded MFS pump and a tet(M)-encoded ribosomal protection protein, is capable of conferring tigecycline resistance in enterococcal clinical isolates.© The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019

The Vigna Genome Server, ‘VigGS’: A genomic knowledge base of the genus Vigna based on high-quality, annotated genome sequence of the azuki bean, Vigna angularis (Willd.) Ohwi & Ohashi.

The genus Vigna includes legume crops such as cowpea, mungbean and azuki bean, as well as >100 wild species. A number of the wild species are highly tolerant to severe environmental conditions including high-salinity, acid or alkaline soil; drought; flooding; and pests and diseases. These features of the genus Vigna make it a good target for investigation of genetic diversity in adaptation to stressful environments; however, a lack of genomic information has hindered such research in this genus. Here, we present a genome database of the genus Vigna, Vigna Genome Server (‘VigGS’, http://viggs.dna.affrc.go.jp), based on the recently sequenced azuki bean genome, which incorporates annotated exon-intron structures, along with evidence for transcripts and proteins, visualized in GBrowse. VigGS also facilitates user construction of multiple alignments between azuki bean genes and those of six related dicot species. In addition, the database displays sequence polymorphisms between azuki bean and its wild relatives and enables users to design primer sequences targeting any variant site. VigGS offers a simple keyword search in addition to sequence similarity searches using BLAST and BLAT. To incorporate up to date genomic information, VigGS automatically receives newly deposited mRNA sequences of pre-set species from the public database once a week. Users can refer to not only gene structures mapped on the azuki bean genome on GBrowse but also relevant literature of the genes. VigGS will contribute to genomic research into plant biotic and abiotic stresses and to the future development of new stress-tolerant crops.© The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.