Menu
September 22, 2019  |  

Gene activity in primary T cells infected with HIV89.6: intron retention and induction of genomic repeats.

HIV infection has been reported to alter cellular gene activity, but published studies have commonly assayed transformed cell lines and lab-adapted HIV strains, yielding inconsistent results. Here we carried out a deep RNA-Seq analysis of primary human T cells infected with the low passage HIV isolate HIV89.6.Seventeen percent of cellular genes showed altered activity 48 h after infection. In a meta-analysis including four other studies, our data differed from studies of HIV infection in cell lines but showed more parallels with infections of primary cells. We found a global trend toward retention of introns after infection, suggestive of a novel cellular response to infection. HIV89.6 infection was also associated with activation of several human endogenous retroviruses (HERVs) and retrotransposons, of interest as possible novel antigens that could serve as vaccine targets. The most highly activated group of HERVs was a subset of the ERV-9. Analysis showed that activation was associated with a particular variant of ERV-9 long terminal repeats that contains an indel near the U3-R border. These data also allowed quantification of >70 splice forms of the HIV89.6 RNA and specified the main types of chimeric HIV89.6-host RNAs. Comparison to over 100,000 integration site sequences from the same infected cell populations allowed quantification of authentic versus artifactual chimeric reads, showing that 5′ read-in, splicing out of HIV89.6 from the D4 donor and 3′ read-through were the most common HIV89.6-host cell chimeric RNA forms.Analysis of RNA abundance after infection of primary T cells with the low passage HIV89.6 isolate disclosed multiple novel features of HIV-host interactions, notably intron retention and induction of transcription of retrotransposons and endogenous retroviruses.


September 22, 2019  |  

Characterization of novel transcripts in pseudorabies virus.

In this study we identified two 3′-coterminal RNA molecules in the pseudorabies virus. The highly abundant short transcript (CTO-S) proved to be encoded between the ul21 and ul22 genes in close vicinity of the replication origin (OriL) of the virus. The less abundant long RNA molecule (CTO-L) is a transcriptional readthrough product of the ul21 gene and overlaps OriL. These polyadenylated RNAs were characterized by ascertaining their nucleotide sequences with the Illumina HiScanSQ and Pacific Biosciences Real-Time (PacBio RSII) sequencing platforms and by analyzing their transcription kinetics through use of multi-time-point Real-Time RT-PCR and the PacBio RSII system. It emerged that transcription of the CTOs is fully dependent on the viral transactivator protein IE180 and CTO-S is not a microRNA precursor. We propose an interaction between the transcription and replication machineries at this genomic location, which might play an important role in the regulation of DNA synthesis.


September 22, 2019  |  

Soil microbial communities are shaped by plant-driven changes in resource availability during secondary succession.

Although we understand the ecological processes eliciting changes in plant community composition during secondary succession, we do not understand whether co-occurring changes in plant detritus shape saprotrophic microbial communities in soil. In this study, we investigated soil microbial composition and function across an old-field chronosequence ranging from 16 to 86 years following agricultural abandonment, as well as three forests representing potential late-successional ecosystems. Fungal and bacterial community composition was quantified from ribosomal DNA, and insight into the functional potential of the microbial community to decay plant litter was gained from shotgun metagenomics and extracellular enzyme assays. Accumulation of soil organic matter across the chronosequence exerted a positive and significant effect on fungal phylogenetic ß-diversity and the activity of extracellular enzymes with lignocellulolytic activity. In addition, the increasing abundance of lignin-rich C4 grasses was positively related to the composition of fungal genes with lignocellulolytic function, thereby linking plant community composition, litter biochemistry, and microbial community function. However, edaphic properties were the primary agent shaping bacterial communities, as bacterial ß-diversity and variation in functional gene composition displayed a significant and positive relationship to soil pH across the chronosequence. The late-successional forests were compositionally distinct from the oldest old fields, indicating that substantial changes occur in soil microbial communities as old fields give way to forests. Taken together, our observations demonstrate that plants govern the turnover of soil fungal communities and functional characteristics during secondary succession, due to the continual input of detritus and differences in litter biochemistry among plant species.


September 22, 2019  |  

Metagenomic SMRT sequencing-based exploration of novel lignocellulose-degrading capability in wood detritus from Torreya nucifera in Bija forest on Jeju Island.

Lignocellulose, mostly composed of cellulose, hemicellulose and lignin generated through secondary growth of woody plant, is considered as promising resources for bio-fuel. In order to use lignocellulose as a biofuel, the biodegradation besides high-cost chemical treatments were applied, but its knowledge on decomposition of lignocellulose occurring in a natural environment were insufficient. We analyzed 16S rRNA gene and metagenome to understand how the lignocellulose are decomposed naturally in decayed Torreya nucifera (L) of Bija forest (Bijarim) in Gotjawal, an ecologically distinct environment. A total of 464,360 reads were obtained from 16S rRNA gene sequencing, representing diverse phyla; Proteobacteria (51%), Bacteroidetes (11%) and Actinobacteria (10%). The metagenome analysis using Single Molecules Real-Time Sequencing revealed that the assembled contigs determined by originated from Proteobacteria (58%) and Actinobacteria (10.3%). Carbohydrate Active enZYmes (CAZy) and Protein families (Pfam) based analysis showed that Proteobacteria was involved in degrading whole lignocellulose and Actinobacteria played a role only in a part of hemicellulose degradation. Combining these results, it suggested that Proteobacteria and Actinobacteria had selective biodegradation potential for different lignocellulose substrate. Thus, it is considered that understanding of the systemic microbial degradation pathways may be a useful strategy for recycle of lignocellulosic biomass and the microbial enzymes in Bija forest can be useful natural resources in industrial processes.


September 22, 2019  |  

Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system.

Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA genes by the Sanger sequencing method and have instead adopted highly parallelized sequencing platforms. These new platforms, such as 454 and Illumina’s MiSeq, have allowed researchers to obtain millions of high quality but short sequences. The result of the added sequencing depth has been significant improvements in experimental design. The tradeoff has been the decline in the number of full-length reference sequences that are deposited into databases. To overcome this problem, we tested the ability of the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing platform to generate sequence reads from the 16S rRNA gene. We generated sequencing data from the V4, V3-V5, V1-V3, V1-V5, V1-V6, and V1-V9 variable regions from within the 16S rRNA gene using DNA from a synthetic mock community and natural samples collected from human feces, mouse feces, and soil. The mock community allowed us to assess the actual sequencing error rate and how that error rate changed when different curation methods were applied. We developed a simple method based on sequence characteristics and quality scores to reduce the observed error rate for the V1-V9 region from 0.69 to 0.027%. This error rate is comparable to what has been observed for the shorter reads generated by 454 and Illumina’s MiSeq sequencing platforms. Although the per base sequencing cost is still significantly more than that of MiSeq, the prospect of supplementing reference databases with full-length sequences from organisms below the limit of detection from the Sanger approach is exciting.


September 22, 2019  |  

Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing.

Genes in prokaryotic genomes are often arranged into clusters and co-transcribed into polycistronic RNAs. Isolated examples of polycistronic RNAs were also reported in some higher eukaryotes but their presence was generally considered rare. Here we developed a long-read sequencing strategy to identify polycistronic transcripts in several mushroom forming fungal species including Plicaturopsis crispa, Phanerochaete chrysosporium, Trametes versicolor, and Gloeophyllum trabeum. We found genome-wide prevalence of polycistronic transcription in these Agaricomycetes, involving up to 8% of the transcribed genes. Unlike polycistronic mRNAs in prokaryotes, these co-transcribed genes are also independently transcribed. We show that polycistronic transcription may interfere with expression of the downstream tandem gene. Further comparative genomic analysis indicates that polycistronic transcription is conserved among a wide range of mushroom forming fungi. In summary, our study revealed, for the first time, the genome prevalence of polycistronic transcription in a phylogenetic range of higher fungi. Furthermore, we systematically show that our long-read sequencing approach and combined bioinformatics pipeline is a generic powerful tool for precise characterization of complex transcriptomes that enables identification of mRNA isoforms not recovered via short-read assembly.


September 22, 2019  |  

Initial colonization, community assembly and ecosystem function: fungal colonist traits and litter biochemistry mediate decay rate.

Priority effects are an important ecological force shaping biotic communities and ecosystem processes, in which the establishment of early colonists alters the colonization success of later-arriving organisms via competitive exclusion and habitat modification. However, we do not understand which biotic and abiotic conditions lead to strong priority effects and lasting historical contingencies. Using saprotrophic fungi in a model leaf decomposition system, we investigated whether compositional and functional consequences of initial colonization were dependent on initial colonizer traits, resource availability or a combination thereof. To test these ideas, we factorially manipulated leaf litter biochemistry and initial fungal colonist identity, quantifying subsequent community composition, using neutral genetic markers, and community functional characteristics, including enzyme potential and leaf decay rates. During the first 3 months, initial colonist respiration rate and physiological capacity to degrade plant detritus were significant determinants of fungal community composition and leaf decay, indicating that rapid growth and lignolytic potential of early colonists contributed to altered trajectories of community assembly. Further, initial colonization on oak leaves generated increasingly divergent trajectories of fungal community composition and enzyme potential, indicating stronger initial colonizer effects on energy-poor substrates. Together, these observations provide evidence that initial colonization effects, and subsequent consequences on litter decay, are dependent upon substrate biochemistry and physiological traits within a regional species pool. Because microbial decay of plant detritus is important to global C storage, our results demonstrate that understanding the mechanisms by which initial conditions alter priority effects during community assembly may be key to understanding the drivers of ecosystem-level processes. © 2015 John Wiley & Sons Ltd.


September 22, 2019  |  

Single cell genomic study of Dehalococcoidetes species from deep-sea sediments of the Peruvian Margin.

The phylum Chloroflexi is one of the most frequently detected phyla in the subseafloor of the Pacific Ocean margins. Dehalogenating Chloroflexi (Dehalococcoidetes) was originally discovered as the key microorganisms mediating reductive dehalogenation via their key enzymes reductive dehalogenases (Rdh) as sole mode of energy conservation in terrestrial environments. The frequent detection of Dehalococcoidetes-related 16S rRNA and rdh genes in the marine subsurface implies a role for dissimilatory dehalorespiration in this environment; however, the two genes have never been linked to each other. To provide fundamental insights into the metabolism, genomic population structure and evolution of marine subsurface Dehalococcoidetes sp., we analyzed a non-contaminated deep-sea sediment core sample from the Peruvian Margin Ocean Drilling Program (ODP) site 1230, collected 7.3?m below the seafloor by a single cell genomic approach. We present for the first time single cell genomic data on three deep-sea Chloroflexi (Dsc) single cells from a marine subsurface environment. Two of the single cells were considered to be part of a local Dehalococcoidetes population and assembled together into a 1.38-Mb genome, which appears to be at least 85% complete. Despite a high degree of sequence-level similarity between the shared proteins in the Dsc and terrestrial Dehalococcoidetes, no evidence for catabolic reductive dehalogenation was found in Dsc. The genome content is however consistent with a strictly anaerobic organotrophic or lithotrophic lifestyle.


September 22, 2019  |  

Next generation multilocus sequence typing (NGMLST) and the analytical software program MLSTEZ enable efficient, cost-effective, high-throughput, multilocus sequencing typing.

Multilocus sequence typing (MLST) has become the preferred method for genotyping many biological species, and it is especially useful for analyzing haploid eukaryotes. MLST is rigorous, reproducible, and informative, and MLST genotyping has been shown to identify major phylogenetic clades, molecular groups, or subpopulations of a species, as well as individual strains or clones. MLST molecular types often correlate with important phenotypes. Conventional MLST involves the extraction of genomic DNA and the amplification by PCR of several conserved, unlinked gene sequences from a sample of isolates of the taxon under investigation. In some cases, as few as three loci are sufficient to yield definitive results. The amplicons are sequenced, aligned, and compared by phylogenetic methods to distinguish statistically significant differences among individuals and clades. Although MLST is simpler, faster, and less expensive than whole genome sequencing, it is more costly and time-consuming than less reliable genotyping methods (e.g. amplified fragment length polymorphisms). Here, we describe a new MLST method that uses next-generation sequencing, a multiplexing protocol, and appropriate analytical software to provide accurate, rapid, and economical MLST genotyping of 96 or more isolates in single assay. We demonstrate this methodology by genotyping isolates of the well-characterized, human pathogenic yeast Cryptococcus neoformans. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Bypassing the Restriction System To Improve Transformation of Staphylococcus epidermidis.

Staphylococcus epidermidis is the leading cause of infections on indwelling medical devices worldwide. Intrinsic antibiotic resistance and vigorous biofilm production have rendered these infections difficult to treat and, in some cases, require the removal of the offending medical prosthesis. With the exception of two widely passaged isolates, RP62A and 1457, the pathogenesis of infections caused by clinical S. epidermidis strains is poorly understood due to the strong genetic barrier that precludes the efficient transformation of foreign DNA into clinical isolates. The difficulty in transforming clinical S. epidermidis isolates is primarily due to the type I and IV restriction-modification systems, which act as genetic barriers. Here, we show that efficient plasmid transformation of clinical S. epidermidis isolates from clonal complexes 2, 10, and 89 can be realized by employing a plasmid artificial modification (PAM) in Escherichia coli DC10B containing a ?dcm mutation. This transformative technique should facilitate our ability to genetically modify clinical isolates of S. epidermidis and hence improve our understanding of their pathogenesis in human infections.IMPORTANCEStaphylococcus epidermidis is a source of considerable morbidity worldwide. The underlying mechanisms contributing to the commensal and pathogenic lifestyles of S. epidermidis are poorly understood. Genetic manipulations of clinically relevant strains of S. epidermidis are largely prohibited due to the presence of a strong restriction barrier. With the introductions of the tools presented here, genetic manipulation of clinically relevant S. epidermidis isolates has now become possible, thus improving our understanding of S. epidermidis as a pathogen. Copyright © 2017 American Society for Microbiology.


September 22, 2019  |  

Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation.

Host factors in the intestine help select for bacteria that promote health. Certain commensals can utilize mucins as an energy source, thus promoting their colonization. However, health conditions such as inflammatory bowel disease (IBD) are associated with a reduced mucus layer, potentially leading to dysbiosis associated with this disease. We characterize the capability of commensal species to cleave and transport mucin-associated monosaccharides and identify several Clostridiales members that utilize intestinal mucins. One such mucin utilizer, Peptostreptococcus russellii, reduces susceptibility to epithelial injury in mice. Several Peptostreptococcus species contain a gene cluster enabling production of the tryptophan metabolite indoleacrylic acid (IA), which promotes intestinal epithelial barrier function and mitigates inflammatory responses. Furthermore, metagenomic analysis of human stool samples reveals that the genetic capability of microbes to utilize mucins and metabolize tryptophan is diminished in IBD patients. Our data suggest that stimulating IA production could promote anti-inflammatory responses and have therapeutic benefits. Copyright © 2017 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes.

Microbial electrosynthesis is the biocathode-driven production of chemicals from CO2 and has the promise to be a sustainable, carbon-consuming technology. To date, microbial electrosynthesis of acetate, the first step in order to generate liquid fuels from CO2, has been characterized by low rates and yields. To improve performance, a previously established acetogenic biocathode was operated in semi-batch mode at a poised potential of -590 mV vs SHE for over 150 days beyond its initial development. Rates of acetate production reached a maximum of 17.25 mM day(-1) (1.04 g L(-1) d(-1)) with accumulation to 175 mM (10.5 g L(-1)) over 20 days. Hydrogen was also produced at high rates by the biocathode, reaching 100 mM d(-1) (0.2 g L(-1) d(-1)) and a total accumulation of 1164 mM (2.4 g L(-1)) over 20 days. Phylogenetic analysis of the active electrosynthetic microbiome revealed a similar community structure to what was observed during an earlier stage of development of the electroacetogenic microbiome. Acetobacterium spp. dominated the active microbial population on the cathodes. Also prevalent were Sulfurospirillum spp. and an unclassified Rhodobacteraceae. Taken together, these results demonstrate the stability, resilience, and improved performance of electrosynthetic biocathodes following long-term operation. Furthermore, sustained product formation at faster rates by a carbon-capturing microbiome is a key milestone addressed in this study that advances microbial electrosynthesis systems toward commercialization.


September 22, 2019  |  

Single-cell (meta-)genomics of a dimorphic Candidatus Thiomargarita nelsonii reveals genomic plasticity.

The genus Thiomargarita includes the world’s largest bacteria. But as uncultured organisms, their physiology, metabolism, and basis for their gigantism are not well understood. Thus, a genomics approach, applied to a single Candidatus Thiomargarita nelsonii cell was employed to explore the genetic potential of one of these enigmatic giant bacteria. The Thiomargarita cell was obtained from an assemblage of budding Ca. T. nelsonii attached to a provannid gastropod shell from Hydrate Ridge, a methane seep offshore of Oregon, USA. Here we present a manually curated genome of Bud S10 resulting from a hybrid assembly of long Pacific Biosciences and short Illumina sequencing reads. With respect to inorganic carbon fixation and sulfur oxidation pathways, the Ca. T. nelsonii Hydrate Ridge Bud S10 genome was similar to marine sister taxa within the family Beggiatoaceae. However, the Bud S10 genome contains genes suggestive of the genetic potential for lithotrophic growth on arsenite and perhaps hydrogen. The genome also revealed that Bud S10 likely respires nitrate via two pathways: a complete denitrification pathway and a dissimilatory nitrate reduction to ammonia pathway. Both pathways have been predicted, but not previously fully elucidated, in the genomes of other large, vacuolated, sulfur-oxidizing bacteria. Surprisingly, the genome also had a high number of unusual features for a bacterium to include the largest number of metacaspases and introns ever reported in a bacterium. Also present, are a large number of other mobile genetic elements, such as insertion sequence (IS) transposable elements and miniature inverted-repeat transposable elements (MITEs). In some cases, mobile genetic elements disrupted key genes in metabolic pathways. For example, a MITE interrupts hupL, which encodes the large subunit of the hydrogenase in hydrogen oxidation. Moreover, we detected a group I intron in one of the most critical genes in the sulfur oxidation pathway, dsrA. The dsrA group I intron also carried a MITE sequence that, like the hupL MITE family, occurs broadly across the genome. The presence of a high degree of mobile elements in genes central to Thiomargarita’s core metabolism has not been previously reported in free-living bacteria and suggests a highly mutable genome.


September 22, 2019  |  

Long-term changes of bacterial and viral compositions in the intestine of a recovered Clostridium difficile patient after fecal microbiota transplantation

Fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infections (RCDIs). However, long-term effects on the patients’ gut microbiota and the role of viruses remain to be elucidated. Here, we characterized bacterial and viral microbiota in the feces of a cured RCDI patient at various time points until 4.5 yr post-FMT compared with the stool donor. Feces were subjected to DNA sequencing to characterize bacteria and double-stranded DNA (dsDNA) viruses including phages. The patient’s microbial communities varied over time and showed little overall similarity to the donor until 7 mo post-FMT, indicating ongoing gut microbiota adaption in this time period. After 4.5 yr, the patient’s bacteria attained donor-like compositions at phylum, class, and order levels with similar bacterial diversity. Differences in the bacterial communities between donor and patient after 4.5 yr were seen at lower taxonomic levels. C. difficile remained undetectable throughout the entire timespan. This demonstrated sustainable donor feces engraftment and verified long-term therapeutic success of FMT on the molecular level. Full engraftment apparently required longer than previously acknowledged, suggesting the implementation of year-long patient follow-up periods into clinical practice. The identified dsDNA viruses were mainly Caudovirales phages. Unexpectedly, sequences related to giant algae–infecting Chlorella viruses were also detected. Our findings indicate that intestinal viruses may be implicated in the establishment of gut microbiota. Therefore, virome analyses should be included in gut microbiota studies to determine the roles of phages and other viruses—such as Chlorella viruses—in human health and disease, particularly during RCDI.


September 22, 2019  |  

Fungal ITS1 deep-sequencing strategies to reconstruct the composition of a 26-species community and evaluation of the gut mycobiota of healthy Japanese individuals.

The study of mycobiota remains relatively unexplored due to the lack of sufficient available reference strains and databases compared to those of bacterial microbiome studies. Deep sequencing of Internal Transcribed Spacer (ITS) regions is the de facto standard for fungal diversity analysis. However, results are often biased because of the wide variety of sequence lengths in the ITS regions and the complexity of high-throughput sequencing (HTS) technologies. In this study, a curated ITS database, ntF-ITS1, was constructed. This database can be utilized for the taxonomic assignment of fungal community members. We evaluated the efficacy of strategies for mycobiome analysis by using this database and characterizing a mock fungal community consisting of 26 species representing 15 genera using ITS1 sequencing with three HTS platforms: Illumina MiSeq (MiSeq), Ion Torrent Personal Genome Machine (IonPGM), and Pacific Biosciences (PacBio). Our evaluation demonstrated that PacBio’s circular consensus sequencing with greater than 8 full-passes most accurately reconstructed the composition of the mock community. Using this strategy for deep-sequencing analysis of the gut mycobiota in healthy Japanese individuals revealed two major mycobiota types: a single-species type composed of Candida albicans or Saccharomyces cerevisiae and a multi-species type. In this study, we proposed the best possible processing strategies for the three sequencing platforms, of which, the PacBio platform allowed for the most accurate estimation of the fungal community. The database and methodology described here provide critical tools for the emerging field of mycobiome studies.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.