Menu
July 7, 2019  |  

Resolving multicopy duplications de novo using polyploid phasing

While the rise of single-molecule sequencing systems has enabled an unprecedented rise in the ability to assemble complex regions of the genome, long segmental duplications in the genome still remain a challenging frontier in assembly. Segmental duplications are at the same time both gene rich and prone to large structural rearrangements, making the resolution of their sequences important in medical and evolutionary studies. Duplicated sequences that are collapsed in mammalian de novo assemblies are rarely identical; after a sequence is duplicated, it begins to acquire paralog-specific variants. In this paper, we study the problem of resolving the variations in multicopy, long segmental duplications by developing and utilizing algorithms for polyploid phasing. We develop two algorithms: the first one is targeted at maximizing the likelihood of observing the reads given the underlying haplotypes using discrete matrix completion. The second algorithm is based on correlation clustering and exploits an assumption, which is often satisfied in these duplications, that each paralog has a sizable number of paralog-specific variants. We develop a detailed simulation methodology and demonstrate the superior performance of the proposed algorithms on an array of simulated datasets. We measure the likelihood score as well as reconstruction accuracy, i.e., what fraction of the reads are clustered correctly. In both the performance metrics, we find that our algorithms dominate existing algorithms on more than 93% of the datasets. While the discrete matrix completion performs better on likelihood score, the correlation-clustering algorithm performs better on reconstruction accuracy due to the stronger regularization inherent in the algorithm. We also show that our correlation-clustering algorithm can reconstruct on average 7.0 haplotypes in 10-copy duplication datasets whereas existing algorithms reconstruct less than one copy on average.


July 7, 2019  |  

Long-read sequencing offers path to more accurate drug metabolism profiles

In the complex drug discovery process, one of the looming questions for any new compound is how it will be metabolised in a human bodyWhi|e there are several methods for evaluating this, one of the most common involves CYP2D6,the enzyme encoded by the cytochrome P450—2D6 gene.This enzyme is involved in metabolising a quarter of all commonly used medications, making it an important target for ADME and pharmacogenomics studies. It is known to activate some drugs and to play a role in the deactivation or excretion of others.


July 7, 2019  |  

XCAVATOR: accurate detection and genotyping of copy number variants from second and third generation whole-genome sequencing experiments.

We developed a novel software package, XCAVATOR, for the identification of genomic regions involved in copy number variants/alterations (CNVs/CNAs) from short and long reads whole-genome sequencing experiments.By using simulated and real datasets we showed that our tool, based on read count approach, is capable to predict the boundaries and the absolute number of DNA copies CNVs/CNAs with high resolutions. To demonstrate the power of our software we applied it to the analysis Illumina and Pacific Bioscencies data and we compared its performance to other ten state of the art tools.All the analyses we performed demonstrate that XCAVATOR is capable to detect germline and somatic CNVs/CNAs outperforming all the other tools we compared. XCAVATOR is freely available at http://sourceforge.net/projects/xcavator/ .


July 7, 2019  |  

SVachra: a tool to identify genomic structural variation in mate pair sequencing data containing inward and outward facing reads.

Characterization of genomic structural variation (SV) is essential to expanding the research and clinical applications of genome sequencing. Reliance upon short DNA fragment paired end sequencing has yielded a wealth of single nucleotide variants and internal sequencing read insertions-deletions, at the cost of limited SV detection. Multi-kilobase DNA fragment mate pair sequencing has supplemented the void in SV detection, but introduced new analytic challenges requiring SV detection tools specifically designed for mate pair sequencing data. Here, we introduce SVachra – Structural Variation Assessment of CHRomosomal Aberrations, a breakpoint calling program that identifies large insertions-deletions, inversions, inter- and intra-chromosomal translocations utilizing both inward and outward facing read types generated by mate pair sequencing.We demonstrate SVachra’s utility by executing the program on large-insert (Illumina Nextera) mate pair sequencing data from the personal genome of a single subject (HS1011). An additional data set of long-read (Pacific BioSciences RSII) was also generated to validate SV calls from SVachra and other comparison SV calling programs. SVachra exhibited the highest validation rate and reported the widest distribution of SV types and size ranges when compared to other SV callers.SVachra is a highly specific breakpoint calling program that exhibits a more unbiased SV detection methodology than other callers.


July 7, 2019  |  

The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology.

Mobile element insertions (MEIs) represent ~25% of all structural variants in human genomes. Moreover, when they disrupt genes, MEIs can influence human traits and diseases. Therefore, MEIs should be fully discovered along with other forms of genetic variation in whole genome sequencing (WGS) projects involving population genetics, human diseases, and clinical genomics. Here, we describe the Mobile Element Locator Tool (MELT), which was developed as part of the 1000 Genomes Project to perform MEI discovery on a population scale. Using both Illumina WGS data and simulations, we demonstrate that MELT outperforms existing MEI discovery tools in terms of speed, scalability, specificity, and sensitivity, while also detecting a broader spectrum of MEI-associated features. Several run modes were developed to perform MEI discovery on local and cloud systems. In addition to using MELT to discover MEIs in modern humans as part of the 1000 Genomes Project, we also used it to discover MEIs in chimpanzees and ancient (Neanderthal and Denisovan) hominids. We detected diverse patterns of MEI stratification across these populations that likely were caused by (1) diverse rates of MEI production from source elements, (2) diverse patterns of MEI inheritance, and (3) the introgression of ancient MEIs into modern human genomes. Overall, our study provides the most comprehensive map of MEIs to date spanning chimpanzees, ancient hominids, and modern humans and reveals new aspects of MEI biology in these lineages. We also demonstrate that MELT is a robust platform for MEI discovery and analysis in a variety of experimental settings.© 2017 Gardner et al.; Published by Cold Spring Harbor Laboratory Press.


July 7, 2019  |  

SureMap: Versatile, error tolerant, and high sensitive read mapper

SureMap is a versatile, error tolerant and high sensitive read mapper which is able to map “difficult” reads, those requiring many edit operations to be mapped to the reference genome, with acceptable time complexity. Mapping real datasets reveal that many variants unidentifiable by other mappers can be called using Suremap. Moreover, SureMap has a very good running time and accuracy in aligning very long and noisy reads like PacBio and Nanopore against a reference genome.


July 7, 2019  |  

Structural variation offers new home for disease associations and gene discovery

Following completion of the Human Genome Project, most studies of human genetic variation have centered on single nucleotide polymorphisms (SNPs). SNPs are numerous in individual genomes and serve as useful genetic markers in association studies across a population. These markers have been leveraged to identify genetic loci for disease risk and draw associations with numerous traits of interest. Despite their usefulness, SNPs do not tell the whole story. For example, most SNPs are associated with only a small increased risk of disease, and they usually cannot identify on their own which genes are causal. This has resulted in what many researchers have referred to as missing or hidden heritability.


July 7, 2019  |  

Lightning-fast genome variant detection with GROM.

Current human whole genome sequencing projects produce massive amounts of data, often creating significant computational challenges. Different approaches have been developed for each type of genome variant and method of its detection, necessitating users to run multiple algorithms to find variants.We present GROM (Genome Rearrangement OmniMapper), a novel comprehensive variant detection algorithm accepting aligned read files as input and finding SNVs, indels, structural variants (SVs), and copy number variants (CNVs). We show that GROM outperforms state-of-the-art methods on seven validated benchmarks using two whole genome sequencing (WGS) datasets. Additionally, GROM boasts lightning fast run times, analyzing a 50x WGS human dataset (NA12878) on commonly available computer hardware in 11 minutes, more than an order of magnitude (up to 72 times) faster than tools detecting a similar range of variants.Addressing the needs of big data analysis, GROM combines in one algorithm SNV, indel, SV, and CNV detection providing superior speed, sensitivity, and precision. GROM is also able to detect CNVs, SNVs and indels in non-paired read WGS libraries, as well as SNVs and indels in whole exome or RNA sequencing datasets.


July 7, 2019  |  

GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly.

The identification of genomic rearrangements with high sensitivity and specificity using massively parallel sequencing remains a major challenge, particularly in precision medicine and cancer research. Here, we describe a new method for detecting rearrangements, GRIDSS (Genome Rearrangement IDentification Software Suite). GRIDSS is a multithreaded structural variant (SV) caller that performs efficient genome-wide break-end assembly prior to variant calling using a novel positional de Bruijn graph-based assembler. By combining assembly, split read, and read pair evidence using a probabilistic scoring, GRIDSS achieves high sensitivity and specificity on simulated, cell line, and patient tumor data, recently winning SV subchallenge #5 of the ICGC-TCGA DREAM8.5 Somatic Mutation Calling Challenge. On human cell line data, GRIDSS halves the false discovery rate compared to other recent methods while matching or exceeding their sensitivity. GRIDSS identifies nontemplate sequence insertions, microhomologies, and large imperfect homologies, estimates a quality score for each breakpoint, stratifies calls into high or low confidence, and supports multisample analysis.© 2017 Cameron et al.; Published by Cold Spring Harbor Laboratory Press.


July 7, 2019  |  

Variant review with the Integrative Genomics Viewer.

Manual review of aligned reads for confirmation and interpretation of variant calls is an important step in many variant calling pipelines for next-generation sequencing (NGS) data. Visual inspection can greatly increase the confidence in calls, reduce the risk of false positives, and help characterize complex events. The Integrative Genomics Viewer (IGV) was one of the first tools to provide NGS data visualization, and it currently provides a rich set of tools for inspection, validation, and interpretation of NGS datasets, as well as other types of genomic data. Here, we present a short overview of IGV’s variant review features for both single-nucleotide variants and structural variants, with examples from both cancer and germline datasets. IGV is freely available at https://www.igv.org Cancer Res; 77(21); e31-34. ©2017 AACR.©2017 American Association for Cancer Research.


July 7, 2019  |  

Tools for annotation and comparison of structural variation.

The impact of structural variants (SVs) on a variety of organisms and diseases like cancer has become increasingly evident. Methods for SV detection when studying genomic differences across cells, individuals or populations are being actively developed. Currently, just a few methods are available to compare different SVs callsets, and no specialized methods are available to annotate SVs that account for the unique characteristics of these variant types. Here, we introduce SURVIVOR_ant, a tool that compares types and breakpoints for candidate SVs from different callsets and enables fast comparison of SVs to genomic features such as genes and repetitive regions, as well as to previously established SV datasets such as from the 1000 Genomes Project. As proof of concept we compared 16 SV callsets generated by different SV calling methods on a single genome, the Genome in a Bottle sample HG002 (Ashkenazi son), and annotated the SVs with gene annotations, 1000 Genomes Project SV calls, and four different types of repetitive regions. Computation time to annotate 134,528 SVs with 33,954 of annotations was 22 seconds on a laptop.


July 7, 2019  |  

Hunting structural variants: Population by population

Until recently, most population-scale genome sequencing studies have focused on identifying single nucleotide variants (SNVs) to explore genetic differences between individuals. Like so many SNV-based genome-wide association studies, however, these efforts have had difficulty identifying causative genetic mechanisms underlying most complex functions. More and more, the genomics community has realised that structural variation is likely responsible for many of the traits and phenotypes that scientists have not been able to attribute to SNVs. This class of variants, defined as genetic differences of 50 bp or larger, accounts for most of the DNA sequence differences between any two people. Structural variants (SVs) are also already known to cause many common and rare diseases including ALS, schizophrenia, leukemia, Carney complex, and Huntington’s disease. Despite the importance of SVs, these larger variants have been understudied and underreported compared to their single-nucleotide counterparts. One reason is that they remain difficult to detect. Their length often means they cannot be fully spanned using short sequencing reads. They also often occur in highly repetitive or GC-rich regions of the genome, making them challenging targets. As such, this class of human genetic variation has remained vastly under-explored in global populations and is now ripe for discovery.


July 7, 2019  |  

Detection of complex structural variation from paired-end sequencing data

Detecting structural variants (SVs) from sequencing data is a key problem in genome analysis, but the full diversity of SVs is not captured by most methods. We introduce the Automated Reconstruction of Complex Structural Variants (ARC-SV) method, which detects a broad class of structural variants from paired-end whole genome sequencing (WGS) data. Analysis of samples from NA12878 and HuRef suggests that complex SVs are often misclassified by traditional methods. We validated our results both experimentally and by comparison to whole genome assembly and PacBio data; ARC-SV compares favorably to existing algorithms in general and gives state-of-the-art results on complex SV detection. By expanding the range of detectable SVs compared to commonly-used algorithms, ARC-SV allows additional information to be extracted from existing WGS data.


July 7, 2019  |  

Genomic patterns of de novo mutation in simplex autism.

To further our understanding of the genetic etiology of autism, we generated and analyzed genome sequence data from 516 idiopathic autism families (2,064 individuals). This resource includes >59 million single-nucleotide variants (SNVs) and 9,212 private copy number variants (CNVs), of which 133,992 and 88 are de novo mutations (DNMs), respectively. We estimate a mutation rate of ~1.5 × 10(-8) SNVs per site per generation with a significantly higher mutation rate in repetitive DNA. Comparing probands and unaffected siblings, we observe several DNM trends. Probands carry more gene-disruptive CNVs and SNVs, resulting in severe missense mutations and mapping to predicted fetal brain promoters and embryonic stem cell enhancers. These differences become more pronounced for autism genes (p = 1.8 × 10(-3), OR = 2.2). Patients are more likely to carry multiple coding and noncoding DNMs in different genes, which are enriched for expression in striatal neurons (p = 3 × 10(-3)), suggesting a path forward for genetically characterizing more complex cases of autism. Copyright © 2017 Elsevier Inc. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.