Menu
April 21, 2020  |  

Pacbio Sequencing Reveals Identical Organelle Genomes between American Cranberry (Vaccinium macrocarpon Ait.) and a Wild Relative.

Breeding efforts in the American cranberry (Vaccinium macrocarpon Ait.), a North American perennial fruit crop of great importance, have been hampered by the limited genetic and phenotypic variability observed among cultivars and experimental materials. Most of the cultivars commercially used by cranberry growers today were derived from a few wild accessions bred in the 1950s. In different crops, wild germplasm has been used as an important genetic resource to incorporate novel traits and increase the phenotypic diversity of breeding materials. Vaccinium microcarpum (Turcz. ex Rupr.) Schmalh. and V. oxycoccos L., two closely related species, may be cross-compatible with the American cranberry, and could be useful to improve fruit quality such as phytochemical content. Furthermore, given their northern distribution, they could also help develop cold hardy cultivars. Although these species have previously been analyzed in diversity studies, genomic characterization and comparative studies are still lacking. In this study, we sequenced and assembled the organelle genomes of the cultivated American cranberry and its wild relative, V. microcarpum. PacBio sequencing technology allowed us to assemble both mitochondrial and plastid genomes at very high coverage and in a single circular scaffold. A comparative analysis revealed that the mitochondrial genome sequences were identical between both species and that the plastids presented only two synonymous single nucleotide polymorphisms (SNPs). Moreover, the Illumina resequencing of additional accessions of V. microcarpum and V. oxycoccos revealed high genetic variation in both species. Based on these results, we provided a hypothesis involving the extension and dynamics of the last glaciation period in North America, and how this could have shaped the distribution and dispersal of V. microcarpum. Finally, we provided important data regarding the polyploid origin of V. oxycoccos.


April 21, 2020  |  

The alternative reality of plant mitochondrial DNA: One ring does not rule them all.

Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists that circular genome-sized molecules are the primary form of plant mitochondrial DNA, despite the understanding by plant mitochondrial researchers that this is an inaccurate and outdated concept. Many plant mitochondrial genomes have one or more pairs of large repeats that can act as sites for inter- or intramolecular recombination, leading to multiple alternative arrangements (isoforms). Most mitochondrial genomes have been assembled using methods unable to capture the complete spectrum of isoforms within a species, leading to an incomplete inference of their structure and recombinational activity. To document and investigate underlying reasons for structural diversity in plant mitochondrial DNA, we used long-read (PacBio) and short-read (Illumina) sequencing data to assemble and compare mitochondrial genomes of domesticated (Lactuca sativa) and wild (L. saligna and L. serriola) lettuce species. We characterized a comprehensive, complex set of isoforms within each species and compared genome structures between species. Physical analysis of L. sativa mtDNA molecules by fluorescence microscopy revealed a variety of linear, branched, and circular structures. The mitochondrial genomes for L. sativa and L. serriola were identical in sequence and arrangement and differed substantially from L. saligna, indicating that the mitochondrial genome structure did not change during domestication. From the isoforms in our data, we infer that recombination occurs at repeats of all sizes at variable frequencies. The differences in genome structure between L. saligna and the two other Lactuca species can be largely explained by rare recombination events that rearranged the structure. Our data demonstrate that representations of plant mitochondrial genomes as simple, circular molecules are not accurate descriptions of their true nature and that in reality plant mitochondrial DNA is a complex, dynamic mixture of forms.


April 21, 2020  |  

The population genetics of structural variants in grapevine domestication.

Structural variants (SVs) are a largely unexplored feature of plant genomes. Little is known about the type and size of SVs, their distribution among individuals and, especially, their population dynamics. Understanding these dynamics is critical for understanding both the contributions of SVs to phenotypes and the likelihood of identifying them as causal genetic variants in genome-wide associations. Here, we identify SVs and study their evolutionary genomics in clonally propagated grapevine cultivars and their outcrossing wild progenitors. To catalogue SVs, we assembled the highly heterozygous Chardonnay genome, for which one in seven genes is hemizygous based on SVs. Using an integrative comparison between Chardonnay and Cabernet Sauvignon genomes by whole-genome, long-read and short-read alignment, we extended SV detection to population samples. We found that strong purifying selection acts against SVs but particularly against inversion and translocation events. SVs nonetheless accrue as recessive heterozygotes in clonally propagated lineages. They also define outlier regions of genomic divergence between wild and cultivated grapevines, suggesting roles in domestication. Outlier regions include the sex-determination region and the berry colour locus, where independent large, complex inversions have driven convergent phenotypic evolution.


April 21, 2020  |  

Iso-Seq Allows Genome-Independent Transcriptome Profiling of Grape Berry Development.

Transcriptomics has been widely applied to study grape berry development. With few exceptions, transcriptomic studies in grape are performed using the available genome sequence, PN40024, as reference. However, differences in gene content among grape accessions, which contribute to phenotypic differences among cultivars, suggest that a single reference genome does not represent the species’ entire gene space. Though whole genome assembly and annotation can reveal the relatively unique or “private” gene space of any particular cultivar, transcriptome reconstruction is a more rapid, less costly, and less computationally intensive strategy to accomplish the same goal. In this study, we used single molecule-real time sequencing (SMRT) to sequence full-length cDNA (Iso-Seq) and reconstruct the transcriptome of Cabernet Sauvignon berries during berry ripening. In addition, short reads from ripening berries were used to error-correct low-expression isoforms and to profile isoform expression. By comparing the annotated gene space of Cabernet Sauvignon to other grape cultivars, we demonstrate that the transcriptome reference built with Iso-Seq data represents most of the expressed genes in the grape berries and includes 1,501 cultivar-specific genes. Iso-Seq produced transcriptome profiles similar to those obtained after mapping on a complete genome reference. Together, these results justify the application of Iso-Seq to identify cultivar-specific genes and build a comprehensive reference for transcriptional profiling that circumvents the necessity of a genome reference with its associated costs and computational weight.Copyright © 2019 Minio et al.


April 21, 2020  |  

Origin and evolution of the octoploid strawberry genome.

Cultivated strawberry emerged from the hybridization of two wild octoploid species, both descendants from the merger of four diploid progenitor species into a single nucleus more than 1 million years ago. Here we report a near-complete chromosome-scale assembly for cultivated octoploid strawberry (Fragaria?×?ananassa) and uncovered the origin and evolutionary processes that shaped this complex allopolyploid. We identified the extant relatives of each diploid progenitor species and provide support for the North American origin of octoploid strawberry. We examined the dynamics among the four subgenomes in octoploid strawberry and uncovered the presence of a single dominant subgenome with significantly greater gene content, gene expression abundance, and biased exchanges between homoeologous chromosomes, as compared with the other subgenomes. Pathway analysis showed that certain metabolomic and disease-resistance traits are largely controlled by the dominant subgenome. These findings and the reference genome should serve as a powerful platform for future evolutionary studies and enable molecular breeding in strawberry.


April 21, 2020  |  

Diploid Genome Assembly of the Wine Grape Carménère.

In this genome report, we describe the sequencing and annotation of the genome of the wine grape Carménère (clone 02, VCR-702). Long considered extinct, this old French wine grape variety is now cultivated mostly in Chile where it was imported in the 1850s just before the European phylloxera epidemic. Genomic DNA was sequenced using Single Molecule Real Time technology and assembled with FALCON-Unzip, a diploid-aware assembly pipeline. To optimize the contiguity and completeness of the assembly, we tested about a thousand combinations of assembly parameters, sequencing coverage, error correction and repeat masking methods. The final scaffolds provide a complete and phased representation of the diploid genome of this wine grape. Comparison of the two haplotypes revealed numerous heterozygous variants, including loss-of-function ones, some of which in genes associated with polyphenol biosynthesis. Comparisons with other publicly available grape genomes and transcriptomes showed the impact of structural variation on gene content differences between Carménère and other wine grape cultivars. Among the putative cultivar-specific genes, we identified genes potentially involved in aroma production and stress responses. The genome assembly of Carménère expands the representation of the genomic variability in grapes and will enable studies that aim to understand its distinctive organoleptic and agronomical features and assess its still elusive extant genetic variability. A genome browser for Carménère, its annotation, and an associated blast tool are available at http://cantulab.github.io/data.Copyright © 2019 Minio et al.


April 21, 2020  |  

Genome and proteome of the chlorophyll f-producing cyanobacterium Halomicronema hongdechloris: adaptative proteomic shifts under different light conditions.

Halomicronema hongdechloris was the first cyanobacterium to be identified that produces chlorophyll (Chl) f. It contains Chl a and uses phycobiliproteins as its major light-harvesting components under white light conditions. However, under far-red light conditions H. hongdechloris produces Chl f and red-shifted phycobiliprotein complexes to absorb and use far-red light. In this study, we report the genomic sequence of H. hongdechloris and use quantitative proteomic approaches to confirm the deduced metabolic pathways as well as metabolic and photosynthetic changes in response to different photo-autotrophic conditions.The whole genome of H. hongdechloris was sequenced using three different technologies and assembled into a single circular scaffold with a genome size of 5,577,845?bp. The assembled genome has 54.6% GC content and encodes 5273 proteins covering 83.5% of the DNA sequence. Using Tandem Mass Tag labelling, the total proteome of H. hongdechloris grown under different light conditions was analyzed. A total of 1816 proteins were identified, with photosynthetic proteins accounting for 24% of the total mass spectral readings, of which 35% are phycobiliproteins. The proteomic data showed that essential cellular metabolic reactions remain unchanged under shifted light conditions. The largest differences in protein content between white and far-red light conditions reflect the changes to photosynthetic complexes, shifting from a standard phycobilisome and Chl a-based light harvesting system under white light, to modified, red-shifted phycobilisomes and Chl f-containing photosystems under far-red light conditions.We demonstrate that essential cellular metabolic reactions under different light conditions remain constant, including most of the enzymes in chlorophyll biosynthesis and photosynthetic carbon fixation. The changed light conditions cause significant changes in the make-up of photosynthetic protein complexes to improve photosynthetic light capture and reaction efficiencies. The integration of the global proteome with the genome sequence highlights that cyanobacterial adaptation strategies are focused on optimizing light capture and utilization, with minimal changes in other metabolic pathways. Our quantitative proteomic approach has enabled a deeper understanding of both the stability and the flexibility of cellular metabolic networks of H. hongdechloris in response to changes in its environment.


September 22, 2019  |  

Assessing the gene content of the megagenome: sugar pine (Pinus lambertiana).

Sugar pine (Pinus lambertiana Douglas) is within the subgenus Strobus with an estimated genome size of 31 Gbp. Transcriptomic resources are of particular interest in conifers due to the challenges presented in their megagenomes for gene identification. In this study, we present the first comprehensive survey of the P. lambertiana transcriptome through deep sequencing of a variety of tissue types to generate more than 2.5 billion short reads. Third generation, long reads generated through PacBio Iso-Seq has been included for the first time in conifers to combat the challenges associated with de novo transcriptome assembly. A technology comparison is provided here contribute to the otherwise scarce comparisons of 2nd and 3rd generation transcriptome sequencing approaches in plant species. In addition, the transcriptome reference was essential for gene model identification and quality assessment in the parallel project responsible for sequencing and assembly of the entire genome. In this study, the transcriptomic data was also used to address some of the questions surrounding lineage-specific Dicer-like proteins in conifers. These proteins play a role in the control of transposable element proliferation and the related genome expansion in conifers. Copyright © 2016 Author et al.


September 22, 2019  |  

CagY-dependent regulation of type IV secretion in Helicobacter pylori is associated with alterations in integrin binding.

Strains of Helicobacter pylori that cause ulcer or gastric cancer typically express a type IV secretion system (T4SS) encoded by the cag pathogenicity island (cagPAI). CagY is an ortholog of VirB10 that, unlike other VirB10 orthologs, has a large middle repeat region (MRR) with extensive repetitive sequence motifs, which undergo CD4+ T cell-dependent recombination during infection of mice. Recombination in the CagY MRR reduces T4SS function, diminishes the host inflammatory response, and enables the bacteria to colonize at a higher density. Since CagY is known to bind human a5ß1 integrin, we tested the hypothesis that recombination in the CagY MRR regulates T4SS function by modulating binding to a5ß1 integrin. Using a cell-free microfluidic assay, we found that H. pylori binding to a5ß1 integrin under shear flow is dependent on the CagY MRR, but independent of the presence of the T4SS pili, which are only formed when H. pylori is in contact with host cells. Similarly, expression of CagY in the absence of other T4SS genes was necessary and sufficient for whole bacterial cell binding to a5ß1 integrin. Bacteria with variant cagY alleles that reduced T4SS function showed comparable reduction in binding to a5ß1 integrin, although CagY was still expressed on the bacterial surface. We speculate that cagY-dependent modulation of H. pylori T4SS function is mediated by alterations in binding to a5ß1 integrin, which in turn regulates the host inflammatory response so as to maximize persistent infection.IMPORTANCE Infection with H. pylori can cause peptic ulcers and is the most important risk factor for gastric cancer, the third most common cause of cancer death worldwide. The major H. pylori virulence factor that determines whether infection causes disease or asymptomatic colonization is the type IV secretion system (T4SS), a sort of molecular syringe that injects bacterial products into gastric epithelial cells and alters host cell physiology. We previously showed that recombination in CagY, an essential T4SS component, modulates the function of the T4SS. Here we found that these recombination events produce parallel changes in specific binding to a5ß1 integrin, a host cell receptor that is essential for T4SS-dependent translocation of bacterial effectors. We propose that CagY-dependent binding to a5ß1 integrin acts like a molecular rheostat that alters T4SS function and modulates the host immune response to promote persistent infection. Copyright © 2018 Skoog et al.


September 22, 2019  |  

Whole-genome resequencing and pan-transcriptome reconstruction highlight the impact of genomic structural Variation on secondary metabolite gene clusters in the grapevine Esca pathogen Phaeoacremonium minimum.

The Ascomycete fungus Phaeoacremonium minimum is one of the primary causal agents of Esca, a widespread and damaging grapevine trunk disease. Variation in virulence among Pm. minimum isolates has been reported, but the underlying genetic basis of the phenotypic variability remains unknown. The goal of this study was to characterize intraspecific genetic diversity and explore its potential impact on virulence functions associated with secondary metabolism, cellular transport, and cell wall decomposition. We generated a chromosome-scale genome assembly, using single molecule real-time sequencing, and resequenced the genomes and transcriptomes of multiple isolates to identify sequence and structural polymorphisms. Numerous insertion and deletion events were found for a total of about 1 Mbp in each isolate. Structural variation in this extremely gene dense genome frequently caused presence/absence polymorphisms of multiple adjacent genes, mostly belonging to biosynthetic clusters associated with secondary metabolism. Because of the observed intraspecific diversity in gene content due to structural variation we concluded that a transcriptome reference developed from a single isolate is insufficient to represent the virulence factor repertoire of the species. We therefore compiled a pan-transcriptome reference of Pm. minimum comprising a non-redundant set of 15,245 protein-coding sequences. Using naturally infected field samples expressing Esca symptoms, we demonstrated that mapping of meta-transcriptomics data on a multi-species reference that included the Pm. minimum pan-transcriptome allows the profiling of an expanded set of virulence factors, including variable genes associated with secondary metabolism and cellular transport.


July 19, 2019  |  

Condition-dependent co-regulation of genomic clusters of virulence factors in the grapevine trunk pathogen Neofusicoccum parvum.

The ascomycete Neofusicoccum parvum, one of the causal agents of Botryosphaeria dieback, is a destructive wood-infecting fungus and a serious threat to grape production worldwide. The capability to colonize woody tissue, combined with the secretion of phytotoxic compounds, is thought to underlie its pathogenicity and virulence. Here, we describe the repertoire of virulence factors and their transcriptional dynamics as the fungus feeds on different substrates and colonizes the woody stem. We assembled and annotated a highly contiguous genome using single-molecule real-time DNA sequencing. Transcriptome profiling by RNA sequencing determined the genome-wide patterns of expression of virulence factors both in vitro (potato dextrose agar or medium amended with grape wood as substrate) and in planta. Pairwise statistical testing of differential expression, followed by co-expression network analysis, revealed that physically clustered genes coding for putative virulence functions were induced depending on the substrate or stage of plant infection. Co-expressed gene clusters were significantly enriched not only in genes associated with secondary metabolism, but also in those associated with cell wall degradation, suggesting that dynamic co-regulation of transcriptional networks contributes to multiple aspects of N. parvum virulence. In most of the co-expressed clusters, all genes shared at least a common motif in their promoter region, indicative of co-regulation by the same transcription factor. Co-expression analysis also identified chromatin regulators with correlated expression with inducible clusters of virulence factors, suggesting a complex, multi-layered regulation of the virulence repertoire of N. parvum.© 2016 BSPP AND JOHN WILEY & SONS LTD.


July 19, 2019  |  

How Single Molecule Real-Time Sequencing and haplotype phasing have enabled reference-grade diploid genome assembly of wine grapes.

Domesticated grapevines (Vitis vinifera) have relatively small genomes of about 500 Mb (Lodhi and Reisch, 1995; Jaillon et al., 2007; Velasco et al., 2007), which is similar to other small-genomes species like rice (430 Mb; Goff et al., 2002), medicago (500 Mb; Tang et al., 2014), and poplar (465 Mb; Tuskan et al., 2006). Despite their small genome size, the sequencing and assembling of grapevine genomes is difficult because of high levels of heterozygosity. The high heterozygosity in domesticated grapes may be due, in part, to their domestication from an obligately outcrossing, dioecious wild progenitor. Domesticated grapes can be selfed, in theory, because their mating system transitioned to hermaphroditic, self-fertile flowers during domestication. In practice, however, selfed progeny tend to be non-viable, presumably due to a high deleterious recessive load and resulting inbreeding depression. As a consequence of these fitness effects, most grape cultivars are crosses between distantly related parents (Strefeler et al., 1992; Ohmi et al., 1993; Bowers and Meredith, 1997; Sefc et al., 1998; Lopes et al., 1999; Di Gaspero et al., 2005; Tapia et al., 2007; Ibáñez et al., 2009; Cipriani et al., 2010; Myles et al., 2011; Lacombe et al., 2013).


July 7, 2019  |  

Complete genome sequences of four Escherichia coli ST95 isolates from bloodstream infections.

Finished genome sequences are presented for four Escherichia coli strains isolated from bloodstream infections at San Francisco General Hospital. These strains provide reference sequences for four major fimH-identified sublineages within the multilocus sequence type (MLST) ST95 group, and provide insights into pathogenicity and differential antimicrobial susceptibility within this group. Copyright © 2015 Stephens et al.


July 7, 2019  |  

The genetic basis of anoxygenic photosynthetic arsenite oxidation.

‘Photoarsenotrophy’, the use of arsenite as an electron donor for anoxygenic photosynthesis, is thought to be an ancient form of phototrophy along with the photosynthetic oxidation of Fe(II), H2 S, H2 and NO2-. Photoarsenotrophy was recently identified from Paoha Island’s (Mono Lake, CA) arsenic-rich hot springs. The genomes of several photoarsenotrophs revealed a gene cluster, arxB2AB1CD, where arxA is predicted to encode for the sole arsenite oxidase. The role of arxA in photosynthetic arsenite oxidation was confirmed by disrupting the gene in a representative photoarsenotrophic bacterium, resulting in the loss of light-dependent arsenite oxidation. In situ evidence of active photoarsenotrophic microbes was supported by arxA mRNA detection for the first time, in red-pigmented microbial mats within the hot springs of Paoha Island. This work expands on the genetics for photosynthesis coupled to new electron donors and elaborates on known mechanisms for arsenic metabolism, thereby highlighting the complexities of arsenic biogeochemical cycling.© 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.


July 7, 2019  |  

Fallacy of the unique genome: sequence diversity within single Helicobacter pylori strains.

Many bacterial genomes are highly variable but nonetheless are typically published as a single assembled genome. Experiments tracking bacterial genome evolution have not looked at the variation present at a given point in time. Here, we analyzed the mouse-passaged Helicobacter pylori strain SS1 and its parent PMSS1 to assess intra- and intergenomic variability. Using high sequence coverage depth and experimental validation, we detected extensive genome plasticity within these H. pylori isolates, including movement of the transposable element IS607, large and small inversions, multiple single nucleotide polymorphisms, and variation in cagA copy number. The cagA gene was found as 1 to 4 tandem copies located off the cag island in both SS1 and PMSS1; this copy number variation correlated with protein expression. To gain insight into the changes that occurred during mouse adaptation, we also compared SS1 and PMSS1 and observed 46 differences that were distinct from the within-genome variation. The most substantial was an insertion in cagY, which encodes a protein required for a type IV secretion system function. We detected modifications in genes coding for two proteins known to affect mouse colonization, the HpaA neuraminyllactose-binding protein and the FutB a-1,3 lipopolysaccharide (LPS) fucosyltransferase, as well as genes predicted to modulate diverse properties. In sum, our work suggests that data from consensus genome assemblies from single colonies may be misleading by failing to represent the variability present. Furthermore, we show that high-depth genomic sequencing data of a population can be analyzed to gain insight into the normal variation within bacterial strains.IMPORTANCE Although it is well known that many bacterial genomes are highly variable, it is nonetheless traditional to refer to, analyze, and publish “the genome” of a bacterial strain. Variability is usually reduced (“only sequence from a single colony”), ignored (“just publish the consensus”), or placed in the “too-hard” basket (“analysis of raw read data is more robust”). Now that whole-genome sequences are regularly used to assess virulence and track outbreaks, a better understanding of the baseline genomic variation present within single strains is needed. Here, we describe the variability seen in typical working stocks and colonies of pathogen Helicobacter pylori model strains SS1 and PMSS1 as revealed by use of high-coverage mate pair next-generation sequencing (NGS) and confirmed by traditional laboratory techniques. This work demonstrates that reliance on a consensus assembly as “the genome” of a bacterial strain may be misleading. Copyright © 2017 Draper et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.