The human pathogen Streptococcus pneumoniae (pneumococcus) exhibits a high degree of genomic diversity and plasticity. Isolates with high genomic similarity are grouped into lineages that undergo homologous recombination at variable rates. PMEN1 is a pandemic, multidrug-resistant lineage. Heterologous gene exchange between PMEN1 and non-PMEN1 isolates is directional, with extensive gene transfer from PMEN1 strains and only modest transfer into PMEN1 strains. Restriction-modification (R-M) systems can restrict horizontal gene transfer, yet most pneumococcal strains code for either the DpnI or DpnII R-M system and neither limits homologous recombination. Our comparative genomic analysis revealed that PMEN1 isolates code for DpnIII, a third…
Bifidobacterial genome analysis has provided insights as to how these gut commensals adapt to and persist in the human GIT, while also revealing genetic diversity among members of a given bifidobacterial (sub)species. Bifidobacteria are notoriously recalcitrant to genetic modification, which prevents exploration of their genomic functions, including those that convey (human) health benefits.PacBio SMRT sequencing was used to determine the whole genome seqeunces of two B. longum subsp. longum strains. The B. longum pan-genome was computed using PGAP v1.2 and the core B. longum phylogenetic tree was constructed using a maximum-likelihood based approach in PhyML v3.0. M.blmNCII was cloned in…
Biotransformation for increasing the pharmaceutical effect of ginsenosides is getting more and more attractions. Strain Cellulosimicrobium sp. TH-20 isolated from ginseng soil samples was identified to produce enzymes contributing to its excellent biotransformation activity against ginsenosides, the main active components of ginseng. Based on phylogenetic tree and homology analysis, the strain can be designated as Cellulosimicrobium sp. Genome sequencing was performed using the Illumina Miseq to explore the functional genes involved in ginsenoside transformation. The draft genome of Cellulosimicrobium sp. TH-20 encoded 3450 open reading frames, 51 tRNA, and 9 rRNA. All ORFs were annotated using NCBI BLAST with non-redundant…
The genus Brachypodium contains annual and perennial species with both diploid and polyploid genomes. Like the annual species B. distachyon, some of the perennial and polyploid species have traits compatible with use as a model system (e.g. small genomes, rapid generation time, self-fertile and easy to grow). Thus, there is an opportunity to leverage the resources and knowledge developed for B. distachyon to use other Brachypodium species as models for perenniality and the regulation and evolution of polyploid genomes. There are two factors driving an increased interest in perenniality. First, several perennial grasses are being developed as biomass crops for…
Recently it has been shown that Ensifer adhaerens can be used as a plant transformation technology, transferring genes into several plant genomes when equipped with a Ti plasmid. For this study, we have sequenced the genome of Ensifer adhaerens OV14 (OV14) and compared it with those of Agrobacterium tumefaciens C58 (C58) and Sinorhizobium meliloti 1021 (1021); the latter of which has also demonstrated a capacity to genetically transform crop genomes, albeit at significantly reduced frequencies.The 7.7 Mb OV14 genome comprises two chromosomes and two plasmids. All protein coding regions in the OV14 genome were functionally grouped based on an eggNOG…
Hydroxy fatty acids are used in various industries due to their availability, and in particular, Stenotrophomonas sp. has been regarded as a potential candidate for biotechnological applications, including biotransformation that hydrate unsaturated fatty acids into their derivatives. Here we complete the genome sequence of Stenotrophomonas sp. KCTC 12332 which has a size of 4,541,594bp (G+C content of 63.83%) with 3790 coding DNA sequences (CDSs), 67 tRNA and 3 rRNA operons. The genome contains gene encoding oleate hydratase that can convert oleic acid into 10-hydroxyoctadecanoic acid. Copyright © 2017 Elsevier B.V. All rights reserved.
The strain A16, capable of degrading deoxynivalenol was isolated from a wheat field and identified preliminarily as Devosia sp. Here, we present the genome sequence of the Devosia sp. A16, which has a size of 5,032,994bp, with 4913 coding sequences (CDSs). The annotated full genome sequence of the Devosia sp. A16 strain might shed light on the function of its degradation. Copyright © 2015 Elsevier B.V. All rights reserved.
Butanol is currently one of the most discussed biofuels. Its use provides many benefits in comparison to bio-ethanol, but the price of its fermentative production is still high. Genetic improvements could help solve many problems associated with butanol production during ABE fermentation, such as its toxicity, low concentration achievable in the cultivation medium, the need for a relatively expensive substrate, and many more. Clostridium pasteurianum NRRL B-598 is non-type strain producing butanol, acetone, and a negligible amount of ethanol. Its main benefits are high oxygen tolerance, utilization of a wide range of carbon and nitrogen sources, and the availability of…
We report here the complete annotated genome sequence of a clinical serovar 8 isolate Actinobacillus pleuropneumoniae MIDG2331. Unlike the serovar 8 reference strain 405, MIDG2331 is amenable to genetic manipulation via natural transformation as well as conjugation, making it ideal for studies of gene function. Copyright © 2016 Bossé et al.
Actinomycetes produce the majority of the antibiotics currently in clinical use. The efficiency of antibiotic production is affected by multiple factors such as nutrients, pH, temperature and growth phase. Finding the optimal harvesting time is crucial for successful isolation of the desired bioactive metabolites from actinomycetes, but for this conventional chemical analysis has limitations due to the metabolic complexity. This study explores the utility of NMR-based metabolomics for (1) optimizing fermentation time for the production of known and/or unknown bioactive compounds produced by actinomycetes; (2) elucidating the biosynthetic pathway for microbial natural products; and (3) facilitating the biotransformation of nature-abundant…