June 1, 2021  |  

Comprehensive structural and copy-number variant detection with long reads

To comprehensively detect large variants in human genomes, we have extended pbsv – a structural variant caller for long reads – to call copy-number variants (CNVs) from read-clipping and read-depth signatures. In human germline benchmark samples, we detect more than 300 CNVs spanning around 10 Mb, and we call hundreds of additional events in re-arranged cancer samples. Long-read sequencing of diverse humans has revealed more than 20,000 insertion, deletion, and inversion structural variants spanning more than 12 Mb in a typical human genome. Most of these variants are too large to detect with short reads and too small for array comparative genome hybridization (aCGH). While the standard approaches to calling structural variants with long reads thrive in the 50 bp to 10 kb size range, they tend to miss exactly the large (>50 kb) copy-number variants that are called more readily with aCGH and short reads. Standard algorithms rely on reference-based mapping of reads that fully span a variant or on de novo assembly; and copy-number variants are often too large to be spanned by a single read and frequently involve segmentally duplicated sequence that is not yet included in most de novo assemblies.

June 1, 2021  |  

Structural variant in the RNA Binding Motif Protein, X-Linked 2 (RBMX2) gene found to be linked to bipolar disorder

Bipolar disorder (BD) is a phenotypically and genetically complex neurological disorder that affects 1% of the worldwide population. There is compelling evidence from family, twin and adoption studies supporting the involvement of a genetic predisposition with estimated heritability up to ~ 80%. The risk in first-degree relatives is ten times higher than in the general population. Linkage and association studies have implicated multiple putative chromosomal loci for BD susceptibility, however no disease genes have yet to be identified. Here, we have fully characterized a ~12 Mb significantly linked (lod score=3.54) genomic region on chromosome Xq24-q27 in an extended family from a genetic isolate that was using long-read single molecule, real-time (SMRT) sequencing. The family segregates BD in at least 4 generations with 16 individuals out of 61 affected. Thus, this family portrays a highly elevated reoccurrence risk compared to the general population. It is expected that the genetic complexity would be reduced in isolated populations, even in genetically complex disorders such as BD, as in the case of this extended family. We selected 16 key individuals from the X-chromosomally linked family to be sequenced. These selected individuals either carried the disease haplotype, were non-carriers of the disease haplotype, or served as married-in controls. We designed a Nimblegen capture array enriching for 5-9 kb fragments spanning the entire 12 Mb region that were then sequenced using long-read SMRT sequencing to screen for causative structural variants (SVs) explaining the increased risk for BD in this extended family. Altogether, 192 SVs were detected in the critically linked region however most of these represented common variants that could be seen across many of the family members regardless of the disease status. One SV stood out that showed perfect segregation among all affected individuals that were carriers of the disease haplotype. This was a 330bp Alu deletion in intron 4 of the RNA Binding Motif Protein, X-Linked 2 (RBMX2) gene that has previously been shown to play a central role in brain development and function. Moreover, Alu elements in general have also previously been associated with at least 37 neurological and neurodegenerative disorders. In order to validate the finding and the functionality of the identified SV further studies like isoform characterization are warranted.

June 1, 2021  |  

New advances in SMRT Sequencing facilitate multiplexing for de novo and structural variant studies

The latest advancements in Sequel II SMRT Sequencing have increased average read lengths up to 50% compared to Sequel II chemistry 1.0 which allows multiplexing of 2-3 small organisms (<500 Mb) such as insects and worms for producing reference quality assemblies, calling structural variants for up to 2 samples with ~3 Gb genomes, analysis of 48 microbial genomes, and up to 8 communities for metagenomic profiling in a single SMRT Cell 8M. With the improved processivity of the new Sequel II sequencing polymerase, more SMRTbell molecules reach rolling circle mode resulting in longer overall read lengths, thus allowing efficient detection of barcodes (up to 80%) in the SMRTbell templates. Multiplexing of genomes larger than microbial organisms is now achievable. In collaboration with the Wellcome Sanger Institute, we have developed a workflow for multiplexing two individual Anopheles coluzzii using as low as 150 ng genomic DNA per individual. The resulting assemblies had high contiguity (contig N50s over 3 Mb) and completeness (>98% of conserved genes) for both individuals. For microbial multiplexing, we multiplexed 48 microbes with varying complexities and sizes ranging 1.6-8.0 Mb in single SMRT Cell 8M. Using a new end-to-end analysis (Microbial Assembly Analysis, SMRT Link 8.0), assemblies resulted in complete circularized genomes (>200-fold coverage) and efficient detection of >3-200 kb plasmids. Finally, the long read lengths (>90 kb) allows detection of barcodes in large insert SMRTbell templates (>15 kb) thus facilitating multiplex of two human samples in 1 SMRT Cell 8M for detecting SVs, Indels and CNVs. Here, we present results and describe workflows for multiplexing samples for specific applications for SMRT Sequencing.

June 1, 2021  |  

Comprehensive variant detection in a human genome with highly accurate long reads

Introduction: Long-read sequencing has been applied successfully to assemble genomes and detect structural variants. However, due to high raw-read error rates (10-15%), it has remained difficult to call small variants from long reads. Recent improvements in library preparation and sequencing chemistry have increased length, accuracy, and throughput of PacBio circular consensus sequencing (CCS) reads, resulting in 15-20kb reads with average read quality above 99%. Materials and Methods: We sequenced a library from human reference sample HG002 to 18-fold coverage on the PacBio Sequel II with two SMRT Cells 8M. The CCS algorithm was used to generate highly accurate (average 99.9%) 12.9kb reads, which were mapped to the hg19 reference with pbmm2. We detected small variants using Google DeepVariant with a model trained for CCS and phased the variants using WhatsHap. Structural variants were detected with pbsv. Variant calls were evaluated against Genome in a Bottle (GIAB) benchmarks. Results: With these reads, DeepVariant achieves SNP and Indel F1 scores of 99.70% and 96.59% against the GIAB truth set, and pbsv achieves 97.72% recall on structural variants longer than 50bp. Using WhatsHap, small variants were phased into haplotype blocks with 145kb N50. The improved mappability of long reads allows us to align to and detect variants in medically relevant genes such as CYP2D6 and PMS2 that have proven “difficult-to-map” with short reads. Conclusions: These highly accurate long reads combine the mappability and ability to detect structural variants of long reads with the accuracy and ability to detect small variants of short reads.

June 1, 2021  |  

A workflow for the comprehensive detection and prioritization of variants in human genomes with PacBio HiFi reads

PacBio HiFi reads (minimum 99% accuracy, 15-25 kb read length) have emerged as a powerful data type for comprehensive variant detection in human genomes. The HiFi read length extends confident mapping and variant calling to repetitive regions of the genome that are not accessible with short reads. Read length also improves detection of structural variants (SVs), with recall exceeding that of short reads by over 30%. High read quality allows for accurate single nucleotide variant and small indel detection, with precision and recall matching that of short reads. While many tools have been developed to take advantage of these qualities of HiFi reads, there is no end-to-end workflow for the filtering and prioritization of variants uniquely detected with long reads for rare and undiagnosed disease research. We have developed a flexible, modular workflow and web portal for variant analysis from HiFi reads and applied it to a set of rare disease cases unsolved by short-read whole genome sequencing. We expect that broad application of long-read variant detection workflows will solve many more rare disease cases. We have made these tools available at https://github.com/williamrowell/pbRUGD-workflow, and we hope they serve a starting point for developing a robust analysis framework for long read variant detection for rare diseases.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.