fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

ICESag37, a novel integrative and conjugative element carrying antimicrobial resistance genes and potential virulence factors in Streptococcus agalactiae.

ICESag37, a novel integrative and conjugative element carrying multidrug resistance and potential virulence factors, was characterized in a clinical isolate of Streptococcus agalactiae. Two clinical strains of S. agalactiae, Sag37 and Sag158, were isolated from blood samples of new-borns with bacteremia. Sag37 was highly resistant to erythromycin and tetracycline, and susceptible to levofloxacin and penicillin, while Sag158 was resistant to tetracycline and levofloxacin, and susceptible to erythromycin. Transfer experiments were performed and selection was carried out with suitable antibiotic concentrations. Through mating experiments, the erythromycin resistance gene was found to be transferable from Sag37 to Sag158. SmaI-PFGE revealed a new…

Read More »

Sunday, July 7, 2019

Streptococcal toxic shock syndrome caused by the dissemination of an invasive emm3/ST15 strain of Streptococcus pyogenes.

Streptococcus pyogenes (group A Streptococcus [GAS]) is a major human pathogen that causes a wide spectrum of clinical manifestations. Although invasive GAS (iGAS) infections are relatively uncommon, emm3/ST15 GAS is a highly virulent, invasive, and pathogenic strain. Global molecular epidemiology analysis has suggested that the frequency of emm3 GAS has been recently increasing.A 14-year-old patient was diagnosed with streptococcal toxic shock syndrome and severe pneumonia, impaired renal function, and rhabdomyolysis. GAS was isolated from a culture of endotracheal aspirates and designated as KS030. Comparative genome analysis suggested that KS030 is classified as emm3 (emm-type) and ST15 (multilocus sequencing typing [MLST]),…

Read More »

Sunday, July 7, 2019

High incidence of invasive group A Streptococcus disease caused by strains of uncommon emm types in Thunder Bay, Ontario, Canada.

An outbreak of type emm59 invasive group A Streptococcus (iGAS) disease was declared in 2008 in Thunder Bay District, Northwestern Ontario, two years after a country-wide emm59 epidemic was recognized in Canada. Despite a declining number of emm59 infections since 2010, numerous cases of iGAS disease continue to be reported in the area. We collected clinical information on all iGAS cases recorded in Thunder Bay District from 2008-2013. We also emm typed and sequenced the genomes of all available strains isolated in 2011-2013 from iGAS infections, and from severe cases of soft tissue infections. We used whole-genome data to investigate…

Read More »

Sunday, July 7, 2019

Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: A randomized trial in children from Bangladesh

Background Antibiotic resistance is rising in important bacterial pathogens. Phage therapy (PT), the use of bacterial viruses infecting the pathogen in a species-specific way, is a potential alternative. Method T4-like coliphages or a commercial Russian coliphage product or placebo was orally given over 4 days to Bangladeshi children hospitalized with acute bacterial diarrhea. Safety of oral phage was assessed clinically and by functional tests; coliphage and Escherichia coli titers and enteropathogens were determined in stool and quantitative diarrhea parameters (stool output, stool frequency) were measured. Stool microbiota was studied by 16S rRNA gene sequencing; the genomes of four fecal Streptococcus…

Read More »

Sunday, July 7, 2019

Clonal Complex 17 group B Streptococcus strains causing invasive disease in neonates and adults originate from the same genetic pool.

A significant proportion of group B Streptococcus (GBS) neonatal disease, particularly late-onset disease, is associated with strains of serotype III, clonal complex (CC) 17. CC17 strains also cause invasive infections in adults. Little is known about the phylogenetic relationships of isolates recovered from neonatal and adult CC17 invasive infections. We performed whole-genome-based phylogenetic analysis of 93 temporally and geographically matched CC17 strains isolated from both neonatal and adult invasive infections in the metropolitan region of Toronto/Peel, Canada. We also mined the whole-genome data to reveal mobile genetic elements carrying antimicrobial resistance genes. We discovered that CC17 GBS strains causing neonatal…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Streptococcus salivarius HSISS4, a human commensal bacterium highly prevalent in the digestive tract.

The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides. Copyright © 2016 Mignolet et al.

Read More »

Sunday, July 7, 2019

A highly arginolytic Streptococcus species that potently antagonizes Streptococcus mutans.

The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H2O2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans.…

Read More »

Sunday, July 7, 2019

Complete genome sequence of emm28 type Streptococcus pyogenes MEW123, a streptomycin-resistant derivative of a clinical throat isolate suitable for investigation of pathogenesis.

We present here the complete genome sequence of Streptococcus pyogenes type emm28 strain MEW123, a streptomycin-resistant derivative of a pediatric throat isolate. The genome length is 1,878,699 bp, with 38.29% G+C% content. The genome sequence adds value to this virulent emm28 representative strain and will aid in the investigation of streptococcal pathogenesis. Copyright © 2016 Jacob et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of emm4 Streptococcus pyogenes MEW427, a throat isolate from a child meeting clinical criteria for pediatric autoimmune neuropsychiatric disorders associated with streptococcus (PANDAS).

We report the complete genome assembly of the Streptococcus pyogenes type emm4 strain MEW427 (also referred to as strain UM001 in the Pediatric Acute-Onset Neuropsychiatric Syndrome [PANS] Research Consortium), a throat isolate from a child with acute-onset neuropsychiatric symptoms meeting clinical criteria for PANDAS (pediatric autoimmune neuropsychiatric disorders associated with streptococcus). The genome length is 1,814,455 bp with 38.51% G+C%. Copyright © 2016 Jacob et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Streptococcus mitis strain SVGS_061 isolated from a neutropenic patient with viridans group streptococcal shock syndrome.

Streptococcus mitisfrequently causes invasive infections in neutropenic cancer patients, with a subset of patients developing viridans group streptococcal (VGS) shock syndrome. We report here the first complete genome sequence ofS. mitisstrain SVGS_061, which caused VGS shock syndrome, to help elucidate the pathogenesis of severe VGS infection. Copyright © 2016 Petrosyan et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Streptococcus thermophilus MN-BM-A01, a strain with high exopolysaccharides production.

Streptococcus thermophilus MN-BM-A01 (ST MN-BM-A01) (CGMCC No. 11383) was a strain isolated from Yogurt Block in Gansu, China. The yogurt fermented with this strain has good flavor, acidity, and viscosity. Moreover, ST MN-BM-A01 could produce a high level of EPS which can confer the yogurt with improved rheological properties. We reported the complete genome sequence of ST MN-BM-A01 that contains 1,876,516bp encoding 1704 coding sequences (CDSs), 67 tRNA genes and 6 rRNA operons. The genomic sequence indicated that this strain included a 35.3-kb gene cluster involved in EPS biosynthesis. Copyright © 2016. Published by Elsevier B.V.

Read More »

Sunday, July 7, 2019

Bacterial genetics: SMRT-seq reveals an epigenetic switch.

Streptococcus pneumoniae uses genetic diversification as a strategy to achieve phenotypic plasticity. For example, DNA inversion of the hsdS genes of type I restriction-modification (R-M) systems determines whether S. pneumoniae forms opaque or transparent colonies, which have different colonization and virulence characteristics. Zhang and colleagues now use single-molecule, real-time sequencing (SMRT-seq) to show the allelic variation of hsdS that results from site-specific recombination forms part of an epigenetic switch.

Read More »

Sunday, July 7, 2019

Lysosomal Cathepsin A plays a significant role in the processing of endogenous bioactive peptides.

Lysosomal serine carboxypeptidase Cathepsin A (CTSA) is a multifunctional enzyme with distinct protective and catalytic function. CTSA present in the lysosomal multienzyme complex to facilitate the correct lysosomal routing, stability and activation of with beta-galactosidase and alpha-neuraminidase. Beside CTSA has role in inactivation of bioactive peptides including bradykinin, substances P, oxytocin, angiotensin I and endothelin-I by cleavage of 1 or 2 amino acid(s) from C-terminal ends. In this study, we aimed to elucidate the regulatory role of CTSA on bioactive peptides in knock-in mice model of CTSA(S190A) . We investigated the level of bradykinin, substances P, oxytocin, angiotensin I and…

Read More »

Sunday, July 7, 2019

Genome sequence of the oral probiotic Streptococcus salivarius JF.

Streptococcus salivarius is a nonpathogenic Gram-positive bacterium and the predominant colonizer of the oral microbiota. It finds a wide application in the prevention of upper respiratory tract infections, also reducing the frequency of other main pathogens. Here, we present the complete genome sequence of the oral probiotic S. salivarius JF. Copyright © 2016 Jia.

Read More »

Sunday, July 7, 2019

Comparative genomics analysis of Streptococcus tigurinus strains identifies genetic elements specifically and uniquely present in highly virulent strains.

Streptococcus tigurinus is responsible for severe invasive infections such as infective endocarditis, spondylodiscitis and meningitis. As described, S. tigurinus isolates AZ_3aT and AZ_14 were highly virulent (HV phenotype) in an experimental model of infective endocarditis and showed enhanced adherence and invasion of human endothelial cells when compared to low virulent S. tigurinus isolate AZ_8 (LV phenotype). Here, we sought whether genetic determinants could explain the higher virulence of AZ_3aT and AZ_14 isolates. Several genetic determinants specific to the HV strains were identified through extensive comparative genomics amongst which some were thought to be highly relevant for the observed HV phenotype.…

Read More »

1 2 3 4

Subscribe for blog updates:

Archives