Menu
July 7, 2019  |  

Global phylogenomic analysis of nonencapsulated Streptococcus pneumoniae reveals a deep-branching classic lineage that is distinct from multiple sporadic lineages.

The surrounding capsule of Streptococcus pneumoniae has been identified as a major virulence factor and is targeted by pneumococcal conjugate vaccines (PCV). However, nonencapsulated S. pneumoniae (non-Ec-Sp) have also been isolated globally, mainly in carriage studies. It is unknown if non-Ec-Sp evolve sporadically, if they have high antibiotic nonsusceptiblity rates and a unique, specific gene content. Here, whole-genome sequencing of 131 non-Ec-Sp isolates sourced from 17 different locations around the world was performed. Results revealed a deep-branching classic lineage that is distinct from multiple sporadic lineages. The sporadic lineages clustered with a previously sequenced, global collection of encapsulated S. pneumoniae (Ec-Sp) isolates while the classic lineage is comprised mainly of the frequently identified multilocus sequences types (STs) ST344 (n = 39) and ST448 (n = 40). All ST344 and nine ST448 isolates had high nonsusceptiblity rates to ß-lactams and other antimicrobials. Analysis of the accessory genome reveals that the classic non-Ec-Sp contained an increased number of mobile elements, than Ec-Sp and sporadic non-Ec-Sp. Performing adherence assays to human epithelial cells for selected classic and sporadic non-Ec-Sp revealed that the presence of a integrative conjugative element (ICE) results in increased adherence to human epithelial cells (P = 0.005). In contrast, sporadic non-Ec-Sp lacking the ICE had greater growth in vitro possibly resulting in improved fitness. In conclusion, non-Ec-Sp isolates from the classic lineage have evolved separately. They have spread globally, are well adapted to nasopharyngeal carriage and are able to coexist with Ec-Sp. Due to continued use of PCV, non-Ec-Sp may become more prevalent. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Complete genome sequences of three multidrug-resistant clinical isolates of Streptococcus pneumoniae serotype 19A with different susceptibilities to the myxobacterial metabolite carolacton.

The full-genome sequences of three drug- and multidrug-resistant Streptococcus pneumoniae clinical isolates of serotype 19A were determined by PacBio single-molecule real-time sequencing, in combination with Illumina MiSeq sequencing. A comparison to the genomes of other pneumococci indicates a high nucleotide sequence identity to strains Hungary19A-6 and TCH8431/19A. Copyright © 2017 Donner et al.


July 7, 2019  |  

The complete genome sequence of the yogurt isolate Streptococcus thermophilus ACA-DC 2.

Streptococcus thermophilus ACA-DC 2 is a newly sequenced strain isolated from traditional Greek yogurt. Among the 14 fully sequenced strains of S. thermophilus currently deposited in the NCBI database, the ACA-DC 2 strain has the smallest chromosome, containing 1,731,838 bp. The annotation of its genome revealed the presence of 1,850 genes, including 1,556 protein-coding genes, 70 RNA genes and 224 potential pseudogenes. A large number of pseudogenes were identified. This was also accompanied by the absence of pathogenic features suggesting evolution of strain ACA-DC 2 through genome decay processes, most probably due to adaptation to the milk ecosystem. Analysis revealed the existence of one complete lactose-galactose operon, several proteolytic enzymes, one exopolysaccharide cluster, stress response genes and four putative antimicrobial peptides. Interestingly, one CRISPR-cas system and one orphan CRISPR, both carrying only one spacer, were predicted indicating low activity or inactivation of the cas proteins. Nevertheless, four putative restriction-modification systems were determined that may compensate any deficiencies of the CRISPR-cas system. Furthermore, whole genome phylogeny indicated three distinct clades within S. thermophilus. Comparative analysis among selected strains representative for each clade, including strain ACA-DC 2, revealed a high degree of conservation at the genomic scale, but also strain specific regions. Unique genes and genomic islands of strain ACA-DC 2 contained a number of genes potentially acquired through horizontal gene transfer events, that could be related to important technological properties for dairy starters. Our study suggests genomic traits in strain ACA-DC 2 compatible to the production of dairy fermented foods.


July 7, 2019  |  

Perturbations of phosphatidate cytidylyltransferase (CdsA) mediate daptomycin resistance in Streptococcus mitis by a novel mechanism.

Streptococcus mitis/oralis is an important pathogen, causing life-threatening infections such as endocarditis and severe sepsis in immunocompromised patients. The ß-lactam antibiotics are the usual therapy of choice for this organism, but their effectiveness is threatened by the frequent emergence of resistance. The lipopeptide daptomycin (DAP) has been suggested for therapy against such resistant S. mitis/oralis strains due to its in vitro bactericidal activity and demonstrated efficacy against other Gram-positive pathogens. Unlike other bacteria, however, S. mitis/oralis has the unique ability to rapidly develop stable, high-level resistance to DAP upon exposure to the drug both in vivo and in vitro Using isogenic DAP-susceptible and DAP-resistant S. mitis/oralis strain pairs, we describe a mechanism of resistance to both DAP and cationic antimicrobial peptides that involves loss-of-function mutations in cdsA (encoding a phosphatidate cytidylyltransferase). CdsA catalyzes the synthesis of cytidine diphosphate-diacylglycerol, an essential phospholipid intermediate for the production of membrane phosphatidylglycerol and cardiolipin. DAP-resistant S. mitis/oralis strains demonstrated a total disappearance of phosphatidylglycerol, cardiolipin, and anionic phospholipid microdomains from membranes. In addition, these strains exhibited cross-resistance to cationic antimicrobial peptides from human neutrophils (i.e., hNP-1). Interestingly, CdsA-mediated changes in phospholipid metabolism were associated with DAP hyperaccumulation in a small subset of the bacterial population, without any binding by the remaining larger population. Our results indicate that CdsA is the major mediator of high-level DAP resistance in S. mitis/oralis and suggest a novel mechanism of bacterial survival against attack by antimicrobial peptides of both innate and exogenous origins. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Regulation of PI-2b pilus expression in hypervirulent Streptococcus agalactiae ST-17 BM110.

The widely spread Streptococcus agalactiae (also known as Group B Streptococcus, GBS) “hypervirulent” ST17 clone is strongly associated with neonatal meningitis. The PI-2b locus is mainly found in ST17 strains but is also present in a few non ST17 human isolates such as the ST-7 prototype strain A909. Here, we analysed the expression of the PI-2b pilus in the ST17 strain BM110 as compared to the non ST17 A909. Comparative genome analyses revealed the presence of a 43-base pair (bp) hairpin-like structure in the upstream region of PI-2b operon in all 26 ST17 genomes, which was absent in the 8 non-ST17 strains carrying the PI-2b locus. Deletion of this 43-bp sequence in strain BM110 resulted in a 3- to 5-fold increased transcription of PI-2b. Characterization of PI-2b promoter region in A909 and BM110 strains was carried out by RNAseq, primer extension, qRT-PCR and transcriptional fusions with gfp as reporter gene. Our results indicate the presence of a single promoter (Ppi2b) with a transcriptional start site (TSS) mapped 37 bases upstream of the start codon of the first PI-2b gene. The large operon of 16 genes located upstream of PI-2b codes for the group B carbohydrate (also known as antigen B), a major constituent of the bacterial cell wall. We showed that the hairpin sequence located between antigen B and PI-2b operons is a transcriptional terminator. In A909, increased expression of PI-2b probably results from read-through transcription from antigen B operon. In addition, we showed that an extended 5′ promoter region is required for maximal transcription of gfp as a reporter gene in S. agalactiae from Ppi2b promoter. Gene reporter assays performed in Lactococcus lactis strain NZ9000, a related non-pathogenic Gram-positive species, revealed that GBS-specific regulatory factors are required to drive PI-2b transcription. PI-2b expression is up-regulated in the BM110?covR mutant as compared to the parental BM110 strain, but this effect is probably indirect. Collectively, our results indicate that PI-2b expression is regulated in GBS ST17 strains, which may confer a selective advantage in the human host either by reducing host immune responses and/or increasing their dissemination potential.


July 7, 2019  |  

Complete genome sequence of the gamma-aminobutyric acid-producing strain Streptococcus thermophilus APC151.

Here is presented the whole-genome sequence of Streptococcus thermophilus APC151, isolated from a marine fish. This bacterium produces gamma-aminobutyric acid (GABA) in high yields and is biotechnologically suitable to produce naturally GABA-enriched biofunctional yogurt. Its complete genome comprises 2,097 genes and 1,839,134 nucleotides, with an average G+C content of 39.1%. Copyright © 2017 Linares et al.


July 7, 2019  |  

2015 epidemic of severe Streptococcus agalactiae sequence type 283 infections in Singapore associated with the consumption of raw freshwater fish: a detailed analysis of clinical, epidemiological, and bacterial sequencing data.

Streptococcus agalactiae (group B Streptococcus [GBS]) has not been described as a foodborne pathogen. However, in 2015, a large outbreak of severe invasive sequence type (ST) 283 GBS infections in adults epidemiologically linked to the consumption of raw freshwater fish occurred in Singapore. We attempted to determine the scale of the outbreak, define the clinical spectrum of disease, and link the outbreak to contaminated fish.Time-series analysis was performed on microbiology laboratory data. Food handlers and fishmongers were screened for enteric carriage of GBS. A retrospective cohort study was conducted to assess differences in demographic and clinical characteristics of patients with invasive ST283 and non-ST283 infections. Whole-genome sequencing was performed on human and fish ST283 isolates from Singapore, Thailand, and Hong Kong.The outbreak was estimated to have started in late January 2015. Within the study cohort of 408 patients, ST283 accounted for 35.8% of cases. Patients with ST283 infection were younger and had fewer comorbidities but were more likely to develop meningoencephalitis, septic arthritis, and spinal infection. Of 82 food handlers and fishmongers screened, none carried ST283. Culture of 43 fish samples yielded 13 ST283-positive samples. Phylogenomic analysis of 161 ST283 isolates from humans and fish revealed they formed a tight clade distinguished by 93 single-nucleotide polymorphisms.ST283 is a zoonotic GBS clone associated with farmed freshwater fish, capable of causing severe disease in humans. It caused a large foodborne outbreak in Singapore and poses both a regional and potentially more widespread threat.


July 7, 2019  |  

Genome evolution to penicillin resistance in serotype 3 Streptococcus pneumoniae by capsular switching.

Streptococcus pneumoniae isolates of serotype 3 were collected from cases of invasive pneumococcal disease (n= 124) throughout Japan between April 2010 and March 2013. A penicillin-resistantS. pneumoniae(PRSP) isolate from an adult patient, strain KK0981 of serotype 3, was identified among these strains. Whole-genome analysis characterized this PRSP as a recombinant strain derived from PRSP of serotype 23F with thecpslocus (20.3 kb) replaced by that of a penicillin-susceptible strain of serotype 3. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Parallel evolution of group B Streptococcus hypervirulent clonal complex 17 unveils new pathoadaptive mutations.

Group B Streptococcus (GBS) is a commensal of the gastrointestinal and genitourinary tracts, while a prevailing cause of neonatal disease worldwide. Of the various clonal complexes (CCs), CC17 is overrepresented in GBS-infected newborns for reasons that are still largely unknown. Here, we report a comprehensive genomic analysis of 626 CC17 isolates collected worldwide, identifying the genetic traits behind their successful adaptation to humans and the underlying differences between carriage and clinical strains. Comparative analysis with 923 GBS genomes belonging to CC1, CC19, and CC23 revealed that the evolution of CC17 is distinct from that of other human-adapted lineages and recurrently targets functions related to nucleotide and amino acid metabolism, cell adhesion, regulation, and immune evasion. We show that the most distinctive features of disease-specific CC17 isolates were frequent mutations in the virulence-associated CovS and Stk1 kinases, underscoring the crucial role of the entire CovRS regulatory pathway in modulating the pathogenicity of GBS. Importantly, parallel and convergent evolution of major components of the bacterial cell envelope, such as the capsule biosynthesis operon, the pilus, and Rib, reflects adaptation to host immune pressures and should be taken into account in the ongoing development of a GBS vaccine. The presence of recurrent targets of evolution not previously implicated in virulence also opens the way for uncovering new functions involved in host colonization and GBS pathogenesis. IMPORTANCE The incidence of group B Streptococcus (GBS) neonatal disease continues to be a significant cause of concern worldwide. Strains belonging to clonal complex 17 (CC17) are the most frequently responsible for GBS infections in neonates, especially among late-onset disease cases. Therefore, we undertook the largest genomic study of GBS CC17 strains to date to decipher the genetic bases of their remarkable colonization and infection ability. We show that crucial functions involved in different steps of the colonization or infection process of GBS are distinctly mutated during the adaptation of CC17 to the human host. In particular, our results implicate the CovRS two-component regulator of virulence in the differentiation between carriage- and disease-associated isolates. Not only does this work raise important implications for the ongoing development of a vaccine against GBS but might also drive the discovery of key functions for GBS adaptation and pathogenesis that have been overlooked until now. Author Video: An author video summary of this article is available.


July 7, 2019  |  

Whole-genome sequence of Streptococcus tigurinus strain osk_001, isolated from postmortem material.

Streptococcus tigurinus was recently described as a novel species, and some strains are highly virulent. We detected S. tigurinus in infected tissue sampled by necropsy. In order to characterize and confirm the virulence of this species, whole-genome sequencing of the pure cultured bacterium was performed. We found that the strain has specific and unique genetic elements contained in highly virulent strains of S. tigurinus. Copyright © 2017 Yoshizawa et al.


July 7, 2019  |  

Gene acquisition by a distinct phyletic group within Streptococcus pneumoniae promotes adhesion to the ocular epithelium.

Streptococcus pneumoniae (pneumococcus) displays broad tissue tropism and infects multiple body sites in the human host. However, infections of the conjunctiva are limited to strains within a distinct phyletic group with multilocus sequence types ST448, ST344, ST1186, ST1270, and ST2315. In this study, we sequenced the genomes of six pneumococcal strains isolated from eye infections. The conjunctivitis isolates are grouped in a distinct phyletic group together with a subset of nasopharyngeal isolates. The keratitis (infection of the cornea) and endophthalmitis (infection of the vitreous body) isolates are grouped with the remainder of pneumococcal strains. Phenotypic characterization is consistent with morphological differences associated with the distinct phyletic group. Specifically, isolates from the distinct phyletic group form aggregates in planktonic cultures and chain-like structures in biofilms grown on abiotic surfaces. To begin to investigate the association between genotype and epidemiology, we focused on a predicted surface-exposed adhesin (SspB) encoded exclusively by this distinct phyletic group. Phylogenetic analysis of the gene encoding SspB in the context of a streptococcal species tree suggests that sspB was acquired by lateral gene transfer from Streptococcus suis. Furthermore, an sspB deletion mutant displays decreased adherence to cultured cells from the ocular epithelium compared to the isogenic wild-type and complemented strains. Together these findings suggest that acquisition of genes from outside the species has contributed to pneumococcal tissue tropism by enhancing the ability of a subset of strains to infect the ocular epithelium causing conjunctivitis. IMPORTANCE Changes in the gene content of pathogens can modify their ability to colonize and/or survive in different body sites in the human host. In this study, we investigate a gene acquisition event and its role in the pathogenesis of Streptococccus pneumoniae (pneumococcus). Our findings suggest that the gene encoding the predicted surface protein SspB has been transferred from Streptococcus suis (a distantly related streptococcal species) into a distinct set of pneumococcal strains. This group of strains distinguishes itself from the remainder of pneumococcal strains by extensive differences in genomic composition and by the ability to cause conjunctivitis. We find that the presence of sspB increases adherence of pneumococcus to the ocular epithelium. Thus, our data support the hypothesis that a subset of pneumococcal strains has gained genes from neighboring species that enhance their ability to colonize the epithelium of the eye, thus expanding into a new niche.


July 7, 2019  |  

Complete genome sequence of Streptococcus thermophilus strain B59671, which naturally produces the broad-spectrum bacteriocin thermophilin 110.

Streptococcus thermophilus strain B59671 is a Gram-positive lactic acid bacterium that naturally produces a broad-spectrum bacteriocin, thermophilin 110, and is capable of producing gamma-aminobutyric acid (GABA). The complete genome sequence for this strain contains 1,821,173 nucleotides, 1,936 predicted genes, and an average G+C content of 39.1%.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.