Menu
July 7, 2019

Draft genome sequence of Tuber borchii Vittad., a whitish edible truffle.

The ascomycete Tuber borchii (Pezizomycetes) is a whitish edible truffle that establishes ectomycorrhizal symbiosis with trees and shrubs. This fungus is ubiquitous in Europe and is also cultivated outside Europe. Here, we present the draft genome sequence of T. borchii strain Tbo3840 (97.18 Mb in 969 scaffolds, with 12,346 predicted protein-coding genes).


July 7, 2019

The complete genome sequence of Rhodobaca barguzinensis alga05 (DSM 19920) documents its adaptation for life in soda lakes.

Soda lakes, with their high salinity and high pH, pose a very challenging environment for life. Microorganisms living in these harsh conditions have had to adapt their physiology and gene inventory. Therefore, we analyzed the complete genome of the haloalkaliphilic photoheterotrophic bacterium Rhodobaca barguzinensis strain alga05. It consists of a 3,899,419 bp circular chromosome with 3624 predicted coding sequences. In contrast to most of Rhodobacterales, this strain lacks any extrachromosomal elements. To identify the genes responsible for adaptation to high pH, we compared the gene inventory in the alga05 genome with genomes of 17 reference strains belonging to order Rhodobacterales. We found that all haloalkaliphilic strains contain the mrpB gene coding for the B subunit of the MRP Na+/H+ antiporter, while this gene is absent in all non-alkaliphilic strains, which indicates its importance for adaptation to high pH. Further analysis showed that alga05 requires organic carbon sources for growth, but it also contains genes encoding the ethylmalonyl-CoA pathway for CO2 fixation. Remarkable is the genetic potential to utilize organophosphorus compounds as a source of phosphorus. In summary, its genetic inventory indicates a large flexibility of the alga05 metabolism, which is advantageous in rapidly changing environmental conditions in soda lakes.


July 7, 2019

Complete genome sequence of Clostridium kluyveri JZZ applied in Chinese strong-flavor liquor production.

Chinese strong-flavor liquor (CSFL), accounting for more than 70% of both Chinese liquor production and sales, was produced by complex fermentation with pit mud. Clostridium kluyveri, an important species coexisted with other microorganisms in fermentation pit mud (FPM), could produce caproic acid, which was subsequently converted to the key CSFL flavor substance ethyl caproate. In this study, we present the first complete genome sequence of C. kluyveri isolated from FPM. Clostridium kluyveri JZZ contains one circular chromosome and one circular plasmid with length of 4,454,353 and 58,581 bp, respectively. 4158 protein-coding genes were predicted and 2792 genes could be assigned with COG categories. It possesses the pathway predicted for biosynthesis of caproic acid with ethanol. Compared to other two C. kluyveri genomes, JZZ consists of longer chromosome with multiple gene rearrangements, and contains more genes involved in defense mechanisms, as well as DNA replication, recombination, and repair. Meanwhile, JZZ contains fewer genes involved in secondary metabolites biosynthesis, transport, and catabolism, including genes encoding Polyketide Synthases/Non-ribosomal Peptide Synthetases. Additionally, JZZ possesses 960 unique genes with relatively aggregating in defense mechanisms and transcription. Our study will be available for further research about C. kluyveri isolated from FPM, and will also facilitate the genetic engineering to increase biofuel production and improve fragrance flavor of CSFL.


July 7, 2019

Complete genome sequence of Rhodothermaceae bacterium RA with cellulolytic and xylanolytic activities.

Rhodothermaceae bacterium RA is a halo-thermophile isolated from a saline hot spring. Previously, the genome of this bacterium was sequenced using a HiSeq 2500 platform culminating in 91 contigs. In this report, we report on the resequencing of its complete genome using a PacBio RSII platform. The genome has a GC content of 68.3%, is 4,653,222 bp in size, and encodes 3711 genes. We are interested in understanding the carbohydrate metabolic pathway, in particular the lignocellulosic biomass degradation pathway. Strain RA harbors 57 glycosyl hydrolase (GH) genes that are affiliated with 30 families. The bacterium consists of cellulose-acting (GH 3, 5, 9, and 44) and hemicellulose-acting enzymes (GH 3, 10, and 43). A crude cell-free extract of the bacterium exhibited endoglucanase, xylanase, ß-glucosidase, and ß-xylosidase activities. The complete genome information coupled with biochemical assays confirms that strain RA is able to degrade cellulose and xylan. Therefore, strain RA is another excellent member of family Rhodothermaceae as a repository of novel and thermostable cellulolytic and hemicellulolytic enzymes.


July 7, 2019

A universal SNP and small-indel variant caller using deep neural networks.

Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful sequence reads remains challenging. Here we show that a deep convolutional neural network can call genetic variation in aligned next-generation sequencing read data by learning statistical relationships between images of read pileups around putative variant and true genotype calls. The approach, called DeepVariant, outperforms existing state-of-the-art tools. The learned model generalizes across genome builds and mammalian species, allowing nonhuman sequencing projects to benefit from the wealth of human ground-truth data. We further show that DeepVariant can learn to call variants in a variety of sequencing technologies and experimental designs, including deep whole genomes from 10X Genomics and Ion Ampliseq exomes, highlighting the benefits of using more automated and generalizable techniques for variant calling.


July 7, 2019

Genome size estimation of Chinese cultured artemisia annua L.

Almost all of antimalarial artemisinin is extracted from the traditional Chinese medicinal plant Artemisia annua L. However, under the condition of insufficient genomic in- formation and unresolved genetic backgrounds, regulatory mechanism of artemisinin biosynthetic pathway has not yet been clear. The genome size of genuine A. annua plants is an especially important and fundamental parameter, which helpful for further insight into genomic studies of ar- temisinin biosynthesis and improvement. In current study, all those genome sizes of A. annua samples collected with Barcoding identification were evaluated to be 1.38-1.49 Gb by Flow Cytometry (FCM) with Nipponbare as the bench- mark calibration standard and soybean and maize as two internal standards individually and simultaneously. The ge- nome estimation of seven A. annua strains came from five China provinces (Shandong, Hunan, Chongqing, Sichuan, and Hainan) with a low coefficient of variation (CV, = 2.96%) wasrelative accurate, 12.87% (220 Mb) less than previous reports about a foreign A. annuaspecies with a single con- trol. It facilitated the schedule of A. annua whole genome sequencing project, optimization of assembly methods and insight into its subsequent genetics and evolution.


July 7, 2019

Spalter: A meta machine learning approach to distinguish true DNA variants from sequencing artefacts

Being able to distinguish between true DNA variants and technical sequencing artefacts is a fundamental task in whole genome, exome or targeted gene analysis. Variant calling tools provide diagnostic parameters, such as strand bias or an aggregated overall quality for each called variant, to help users make an informed choice about which variants to accept or discard. Having several such quality indicators poses a problem for the users of variant callers because they need to set or adjust thresholds for each such indicator. Alternatively, machine learning methods can be used to train a classifier based on these indicators. This approach needs large sets of labeled training data, which is not easily available. The new approach presented here relies on the idea that a true DNA variant exists independently of technical features of the read in which it appears (e.g. base quality, strand, position in the read). Therefore the nucleotide separability classification problem – predicting the nucleotide state of each read in a given pileup based on technical features only – should be near impossible to solve for true variants. Nucleotide separability, i.e. achievable classification accuracy, can either be used to distinguish between true variants and technical artefacts directly, using a thresholding approach, or it can be used as a meta-feature to train a separability-based classifier. This article explores both possibilities with promising results, showing accuracies around 90%.


July 7, 2019

Complete genome sequence of the halophile bacterium Kushneria konosiri X49T, isolated from salt-fermented Konosirus punctatus

Kushneria konosiri X49T is a member of the Halomonadaceae family within the order Oceanospirillales and can be isolated from salt-fermented larval gizzard shad. The genome of K. konosiri X49T reported here provides a genetic basis for its halophilic character. Diverse genes were involved in salt-in and -out strategies enabling adaptation of X49T to hypersaline environments. Due to resistance to high salt concentrations, genome research of K. konosiri X49T will contribute to the improvement of environmental and biotechnological usage by enhancing understanding of the osmotic equilibrium in the cytoplasm. Its genome consists of 3,584,631 bp, with an average Gthinspace+thinspaceC content of 59.1%, and 3261 coding sequences, 12 rRNAs, 66 tRNAs, and 8 miscRNAs.


July 7, 2019

Complete genome sequence of Kocuria rhizophila BT304, isolated from the small intestine of castrated beef cattle.

Members of the species Kocuria rhizophila, belonging to the family Micrococcaceae in the phylum Actinobacteria, have been isolated from a wide variety of natural sources, such as soil, freshwater, fish gut, and clinical specimens. K. rhizophila is important from an industrial viewpoint, because the bacterium grows rapidly with high cell density and exhibits robustness at various growth conditions. However, the bacterium is an opportunistic pathogen involved in human infections. Here, we sequenced and analyzed the genome of the K. rhizophila strain BT304, isolated from the small intestine of adult castrated beef cattle.The genome of K. rhizophila BT304 consisted of a single circular chromosome of 2,763,150 bp with a GC content of 71.2%. The genome contained 2359 coding sequences, 51 tRNA genes, and 9 rRNA genes. Sequence annotations with the RAST server revealed many genes related to amino acid, carbohydrate, and protein metabolism. Moreover, the genome contained genes related to branched chain amino acid biosynthesis and degradation. Analysis of the OrthoANI values revealed that the genome has high similarity (>?97.8%) with other K. rhizophila strains, such as DC2201, FDAARGOS 302, and G2. Comparative genomic analysis further revealed that the antibiotic properties of K. rhizophila vary among the strains.The relatively small number of virulence-related genes and the great potential in production of host available nutrients suggest potential application of the BT304 strain as a probiotic in breeding beef cattle.


July 7, 2019

Complete genome sequence of the Robinia pseudoacacia L. symbiont Mesorhizobium amorphae CCNWGS0123.

Mesorhizobium amorphae CCNWGS0123 was isolated in 2006, from effective nodules of Robinia pseudoacacia L. grown in lead-zinc mine tailing site, in Gansu Province, China. M. amorphae CCNWGS0123 is an aerobic, Gram-negative, non-spore-forming rod strain. This paper characterized M. amorphae CCNWGS0123 and presents its complete genome sequence information and genome annotation. The 7,374,589 bp long genome which encodes 7136 protein-coding genes and 63 RNA coding genes, contains one chromosome and four plasmids. Moreover, a chromosome with no gaps was assembled.


July 7, 2019

BMScan: using whole genome similarity to rapidly and accurately identify bacterial meningitis causing species.

Bacterial meningitis is a life-threatening infection that remains a public health concern. Bacterial meningitis is commonly caused by the following species: Neisseria meningitidis, Streptococcus pneumoniae, Listeria monocytogenes, Haemophilus influenzae and Escherichia coli. Here, we describe BMScan (Bacterial Meningitis Scan), a whole-genome analysis tool for the species identification of bacterial meningitis-causing and closely-related pathogens, an essential step for case management and disease surveillance. BMScan relies on a reference collection that contains genomes for 17 focal species to scan against to identify a given species. We established this reference collection by supplementing publically available genomes from RefSeq with genomes from the isolate collections of the Centers for Disease Control Bacterial Meningitis Laboratory and the Minnesota Department of Health Public Health Laboratory, and then filtered them down to a representative set of genomes which capture the diversity for each species. Using this reference collection, we evaluated two genomic comparison algorithms, Mash and Average Nucleotide Identity, for their ability to accurately and rapidly identify our focal species.We found that the results of Mash were strongly correlated with the results of ANI for species identification, while providing a significant reduction in run-time. This drastic difference in run-time enabled the rapid scanning of large reference genome collections, which, when combined with species-specific threshold values, facilitated the development of BMScan. Using a validation set of 15,503 genomes of our species of interest, BMScan accurately identified 99.97% of the species within 16 min 47 s.Identification of the bacterial meningitis pathogenic species is a critical step for case confirmation and further strain characterization. BMScan employs species-specific thresholds for previously-validated, genome-wide similarity statistics compiled from a curated reference genome collection to rapidly and accurately identify the species of uncharacterized bacterial meningitis pathogens and closely related pathogens. BMScan will facilitate the transition in public health laboratories from traditional phenotypic detection methods to whole genome sequencing based methods for species identification.


July 7, 2019

Comparative genomic analysis of Staphylococcus lugdunensis shows a closed pan-genome and multiple barriers to horizontal gene transfer.

Coagulase negative staphylococci (CoNS) are commensal bacteria on human skin. Staphylococcus lugdunensis is a unique CoNS which produces various virulence factors and may, like S. aureus, cause severe infections, particularly in hospital settings. Unlike other staphylococci, it remains highly susceptible to antimicrobials, and genome-based phylogenetic studies have evidenced a highly conserved genome that distinguishes it from all other staphylococci.We demonstrate that S. lugdunensis possesses a closed pan-genome with a very limited number of new genes, in contrast to other staphylococci that have an open pan-genome. Whole-genome nucleotide and amino acid identity levels are also higher than in other staphylococci. We identified numerous genetic barriers to horizontal gene transfer that might explain this result. The S. lugdunensis genome has multiple operons encoding for restriction-modification, CRISPR/Cas and toxin/antitoxin systems. We also identified a new PIN-like domain-associated protein that might belong to a larger operon, comprising a metalloprotease, that could function as a new toxin/antitoxin or detoxification system.We show that S. lugdunensis has a unique genome profile within staphylococci, with a closed pan-genome and several systems to prevent horizontal gene transfer. Its virulence in clinical settings does not rely on its ability to acquire and exchange antibiotic resistance genes or other virulence factors as shown for other staphylococci.


July 7, 2019

STRetch: detecting and discovering pathogenic short tandem repeat expansions.

Short tandem repeat (STR) expansions have been identified as the causal DNA mutation in dozens of Mendelian diseases. Most existing tools for detecting STR variation with short reads do so within the read length and so are unable to detect the majority of pathogenic expansions. Here we present STRetch, a new genome-wide method to scan for STR expansions at all loci across the human genome. We demonstrate the use of STRetch for detecting STR expansions using short-read whole-genome sequencing data at known pathogenic loci as well as novel STR loci. STRetch is open source software, available from github.com/Oshlack/STRetch .


July 7, 2019

PGD: Pineapple Genomics Database.

Pineapple occupies an important phylogenetic position as its reference genome is a model for studying the evolution the Bromeliaceae family and the crassulacean acid metabolism (CAM) photosynthesis. Here, we developed a pineapple genomics database (PGD, http://pineapple.angiosperms.org/pineapple/html/index.html) as a central online platform for storing and integrating genomic, transcriptomic, function annotation and genetic marker data for pineapple (Ananas comosus (L.) Merr.). The PGD currently hosts significant search tools and available datasets for researchers to study comparative genomics, gene expression, gene co-expression molecular marker, and gene annotation of A. comosus (L). PGD also performed a series of additional pages for a genomic browser that visualizes genomic data interactively, bulk data download, a detailed user manual, and data integration information. PGD was developed with the capacity to integrate future data resources, and will be used as a long-term and open access database to facilitate the study of the biology, distribution, and the evolution of pineapple and the relative plant species. An email-based helpdesk is also available to offer support with the website and requests of specific datasets from the research community.


July 7, 2019

Complete genome sequence of Agrobacterium pusense VsBac-Y9, a bacterial symbiont of the dark septate endophytic fungus Veronaeopsis simplex Y34 with potential for improving fungal colonization in roots.

A Rhizobium-related bacterium (Rhizobium sp. VsBac-Y9) is a symbiont living with the dark septate endophytic (DSE) fungus Veronaeopsis simplex Y34. Co-inoculation of Rhizobium sp. VsBac-Y9 with V. simplex Y34 improves the fungal colonization of tomato roots, resulting in a significant increase in aboveground biomass. This study sequenced the complete genome of this V. simplex-helper bacterium using the PacBio and Illumina MiSeq platforms. Hybrid assembly using SPAdes outputted a circular chromosome, a linear chromid, and a circular plasmid for a total genome 5,321,211 bp in size with a G?+?C content of 59.2%. Analysis of concatenated housekeeping genes (atpD-dnaK-groEL-lepA-recA-rpoB-thrE) and calculation of average nucleotide identity, showed that VsBac-Y9 was affiliated with the species Agrobacterium pusense (syn. Rhizobium pusense). Genome analysis revealed that A. pusense VsBac-Y9 contains a series of genes responsible for the host interactions with both fungus and plant. Such genomic information will provide new insights into developing co-inoculants of endophytic fungus and its symbiotic bacterium in future agricultural innovation. Copyright © 2018 Elsevier B.V. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.