The genome of Fusarium oxysporum (Fo) consists of a set of eleven ‘core’ chromosomes, shared by most strains and responsible for housekeeping, and one or several accessory chromosomes. We sequenced a strain of Fo f.sp. radicis-cucumerinum (Forc) using PacBio SMRT sequencing. All but one of the core chromosomes were assembled into single contigs, and a chromosome that shows all the hallmarks of a pathogenicity chromosome comprised two contigs. A central part of this chromosome contains all identified candidate effector genes, including homologs of SIX6, SIX9, SIX11 and SIX 13. We show that SIX6 contributes to virulence of Forc. Through horizontal…
Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C. torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot and brown-rot fungi,…
Dickeya solani is an emerging pathogen that causes soft rot and blackleg diseases in several crops including Solanum tuberosum, but little is known about its genomic diversity and evolution.We combined Illumina and PacBio technologies to complete the genome sequence of D. solani strain 3337 that was used as a reference to compare with 19 other genomes (including that of the type strain IPO2222(T)) which were generated by Illumina technology. This population genomic analysis highlighted an unexpected variability among D. solani isolates since it led to the characterization of two distinct sub-groups within the D. solani species. This approach also revealed…
Pseudomonas chlororaphis strain PA23 is a plant-beneficial bacterium that is able to suppress disease caused by the fungal pathogen Sclerotinia sclerotiorum through a process known as biological control. Here we present a 7.1-Mb assembly of the PA23 genome. Copyright © 2014 Loewen et al.
Pseudomonas brassicacearum DF41, a Gram-negative soil bacterium, is able to suppress the fungal pathogen Sclerotinia sclerotiorum through a process known as biological control. Here, we present a 6.8-Mb assembly of its genome, which is the second fully assembled genome of a P. brassicacearum strain.
In this study, we present the draft genome sequence of the bacterial strain Pseudomonas chlororaphis PCL1601. This bacterium was isolated from the rhizosphere of healthy avocado trees and displayed antagonistic and biological control activities against different soilborne phytopathogenic fungi and oomycetes. Copyright © 2017 Vida et al.
Fungal strain 14919 was originally isolated from a soil sample collected at Mt. Kiyosumi, Chiba Prefecture, Japan. It produces FR901512, a potent and strong 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor. The genome sequence of fungal strain 14919 was determined and annotated to improve the productivity of FR901512. Copyright © 2017 Itoh et al.
Stenocarpella maydis is a plant pathogenic fungus that causes Diplodia ear rot, one of the most destructive diseases of maize. To date, little information is available regarding the molecular basis of pathogenesis in this organism, in part due to limited genomic resources. In this study, a 54.8 Mb draft genome assembly of S. maydis was obtained with Illumina and PacBio sequencing technologies, and analyzed. Comparative genomic analyses with the predominant maize ear rot pathogens Aspergillus flavus, Fusarium verticillioides, and Fusarium graminearum revealed an expanded set of carbohydrate-active enzymes for cellulose and hemicellulose degradation in S. maydis. Analyses of predicted genes…
The fungal pathogen Phellinus noxius is the underlying cause of brown root rot, a disease with causing tree mortality globally, causing extensive damage in urban areas and crop plants. This disease currently has no cure, and despite the global epidemic, little is known about the pathogenesis and virulence of this pathogen. Using Ion Torrent PGM, Illumina MiSeq and PacBio RSII sequencing platforms with various genome assembly methods, we produced the draft genome sequences of four P. noxius strains isolated from infected trees in Hong Kong to further understand the pathogen and identify the mechanisms behind the aggressive nature and virulence…
Evolution of lignocellulose decomposition was one of the most ecologically important innovations in fungi. White-rot fungi in the Agaricomycetes (mushrooms and relatives) are the most effective microorganisms in degrading both cellulose and lignin components of woody plant cell walls (PCW). However, the precise evolutionary origins of lignocellulose decomposition are poorly understood, largely because certain early-diverging clades of Agaricomycetes and its sister group, the Dacrymycetes, have yet to be sampled, or have been undersampled, in comparative genomic studies. Here, we present new genome sequences of ten saprotrophic fungi, including members of the Dacrymycetes and early-diverging clades of Agaricomycetes (Cantharellales, Sebacinales, Auriculariales,…
Several species of the genus Dickeya provoke soft rot and blackleg diseases on a wide range of plants and crops. Dickeya solani has been identified as the causative agent of diseases outbreaks on potato culture in Europe for the last decade. Here, we report the complete genome of the D. solani IPO 2222(T). Using PacBio and Illumina technologies, a unique circular chromosome of 4,919,833 bp was assembled. The G?+?C content reaches 56% and the genomic sequence contains 4,059 predicted proteins. The ANI values calculated for D. solani IPO 2222(T) vs. other available D. solani genomes was over 99.9% indicating a…
Here, we present the complete genome sequence of Rothia aeria type strain JCM 11412, isolated from air in the Russian space laboratory Mir. Recently, there has been an increasing number of reports on infections caused by R. aeria The genomic information will enable researchers to identify the pathogenicity of this organism. Copyright © 2016 Nambu et al.
Dickeya spp. are bacterial pathogens causing soft-rot and blackleg diseases on a wide range of ornamental plants and crops. In this paper, we announce the PacBio complete genome sequences of the plant pathogens Dickeya solani RNS 08.23.3.1.A (PRI3337) and Dickeya dianthicola RNS04.9. Copyright © 2018 Khayi et al.
Ganoderma boninense is the dominant fungal pathogen of basal stem rot (BSR) disease on Elaeis guineensis We sequenced the nuclear genome of mycelia using both Illumina and Pacific Biosciences platforms for assembly of scaffolds. The draft genome comprised 79.24?Mb, 495 scaffolds, and 26,226 predicted coding sequences. Copyright © 2018 Utomo et al.