July 7, 2019  |  

Draft genomes of the fungal pathogen Phellinus noxius in Hong Kong

Authors: Tsang, Karen S. W. and Lam, Regent Y. C. and Kwan, Hoi Shan

The fungal pathogen Phellinus noxius is the underlying cause of brown root rot, a disease with causing tree mortality globally, causing extensive damage in urban areas and crop plants. This disease currently has no cure, and despite the global epidemic, little is known about the pathogenesis and virulence of this pathogen. Using Ion Torrent PGM, Illumina MiSeq and PacBio RSII sequencing platforms with various genome assembly methods, we produced the draft genome sequences of four P. noxius strains isolated from infected trees in Hong Kong to further understand the pathogen and identify the mechanisms behind the aggressive nature and virulence of this fungus. The resulting genomes ranged from 30.8Mb to 31.8Mb in size, and of the four sequences, the YTM97 strain was chosen to produce a high-quality Hong Kong strain genome sequence, resulting in a 31Mb final assembly with 457 scaffolds, an N50 length of 275,889 bp and 96.2% genome completeness. RNA-seq of YTM97 using Illumina HiSeq400 was performed for improved gene prediction. AUGUSTUS and Genemark-ES prediction programs predicted 9,887 protein-coding genes which were annotated using GO and Pfam databases. The encoded carbohydrate active enzymes revealed large numbers of lignolytic enzymes present, comparable to those of other white-rot plant pathogens. In addition, P. noxius also possessed larger numbers of cellulose, xylan and hemicellulose degrading enzymes than other plant pathogens. Searches for virulence genes was also performed using PHI-Base and DFVF databases revealing a host of virulence-related genes and effectors. The combination of non-specific host range, unique carbohydrate active enzyme profile and large amount of putative virulence genes could explain the reasons behind the aggressive nature and increased virulence of this plant pathogen. The draft genome sequences presented here will provide references for strains found in Hong Kong. Together with emerging research, this information could be used for genetic diversity and epidemiology research on a global scale as well as expediting our efforts towards discovering the mechanisms of pathogenicity of this devastating pathogen.

Journal: BioRxiv
DOI: 10.1101/209312
Year: 2017

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.