X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
March 1, 2019

Engineering and modification of microbial chassis for systems and synthetic biology.

Engineering and modifying synthetic microbial chassis is one of the best ways not only to unravel the fundamental principles of life but also to enhance applications in the health, medicine, agricultural, veterinary, and food industries. The two primary strategies for constructing a microbial chassis are the top-down approach (genome reduction) and the bottom-up approach (genome synthesis). Research programs on this topic have been funded in several countries. The 'Minimum genome factory' (MGF) project was launched in 2001 in Japan with the goal of constructing microorganisms with smaller genomes for industrial use. One of the best examples of the results of…

Read More »

March 1, 2019

Genomics: cracking the mysteries of walnuts

The Juglans plants are economically important as they provide nuts, wood and garden trees. They also play an important ecological role by supplying food for wild insects and animals. The decoding of genome sequences has fundamental values for understanding the evolution of Juglans plants and molecules, and is also a prerequisite for molecular breeding. During the last three years, the rapid development of sequencing technology has made walnut research into the genome era. Here, we reviewed the progress of genome sequencing of six Juglans species, the resequencing of four Juglans populations as well as the genome sequencing of the closely…

Read More »

March 1, 2019

From markers to genome-based breeding in wheat.

Recent technological advances in wheat genomics provide new opportunities to uncover genetic variation in traits of breeding interest and enable genome-based breeding to deliver wheat cultivars for the projected food requirements for 2050. There has been tremendous progress in development of whole-genome sequencing resources in wheat and its progenitor species during the last 5 years. High-throughput genotyping is now possible in wheat not only for routine gene introgression but also for high-density genome-wide genotyping. This is a major transition phase to enable genome-based breeding to achieve progressive genetic gains to parallel to projected wheat production demands. These advances have intrigued wheat researchers…

Read More »

March 1, 2019

Analysis of Transcriptome and Epitranscriptome in Plants Using PacBio Iso-Seq and Nanopore-Based Direct RNA Sequencing.

Nanopore sequencing from Oxford Nanopore Technologies (ONT) and Pacific BioSciences (PacBio) single-molecule real-time (SMRT) long-read isoform sequencing (Iso-Seq) are revolutionizing the way transcriptomes are analyzed. These methods offer many advantages over most widely used high-throughput short-read RNA sequencing (RNA-Seq) approaches and allow a comprehensive analysis of transcriptomes in identifying full-length splice isoforms and several other post-transcriptional events. In addition, direct RNA-Seq provides valuable information about RNA modifications, which are lost during the PCR amplification step in other methods. Here, we present a comprehensive summary of important applications of these technologies in plants, including identification of complex alternative splicing (AS), full-length…

Read More »

March 1, 2019

Wild relatives of maize

Crop domestication changed the course of human evolution, and domestication of maize (Zea mays L. subspecies mays), today the world’s most important crop, enabled civilizations to flourish and has played a major role in shaping the world we know today. Archaeological and ethnobotanical research help us understand the development of the cultures and the movements of the peoples who carried maize to new areas where it continued to adapt. Ancient remains of maize cobs and kernels have been found in the place of domestication, the Balsas River Valley (~9,000 years before present era), and the cultivation center, the Tehuacan Valley…

Read More »

March 1, 2019

A Rigorous Interlaboratory Examination of the Need to Confirm Next-Generation Sequencing-Detected Variants with an Orthogonal Method in Clinical Genetic Testing.

Orthogonal confirmation of next-generation sequencing (NGS)-detected germline variants is standard practice, although published studies have suggested that confirmation of the highest-quality calls may not always be necessary. The key question is how laboratories can establish criteria that consistently identify those NGS calls that require confirmation. Most prior studies addressing this question have had limitations: they have been generally of small scale, omitted statistical justification, and explored limited aspects of underlying data. The rigorous definition of criteria that separate high-accuracy NGS calls from those that may or may not be true remains a crucial issue. We analyzed five reference samples and…

Read More »

March 1, 2019

Natural product drug discovery in the genomic era: realities, conjectures, misconceptions, and opportunities.

Natural product discovery from microorganisms provided important sources for antibiotics, anti-cancer agents, immune-modulators, anthelminthic agents, and insecticides during a span of 50 years starting in the 1940s, then became less productive because of rediscovery issues, low throughput, and lack of relevant new technologies to unveil less abundant or not easily detected drug-like natural products. In the early 2000s, it was observed from genome sequencing that Streptomyces species encode about ten times as many secondary metabolites as predicted from known secondary metabolomes. This gave rise to a new discovery approach-microbial genome mining. As the cost of genome sequencing dropped, the numbers of…

Read More »

February 1, 2019

The complexity of the Sclerotinia sclerotiorum pathosystem in soybean: virulence factors, resistance mechanisms, and their exploitation to control Sclerotinia stem rot

Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, is a globally important, yield limiting disease of soybean. Progress has been made in our understanding of this pathosystem at the plant level, such as the key role of oxalic acid in disease development and the importance of cell wall-degrading enzymes and other secreted proteins. Unfortunately, advances have largely focused on the fungal side of this interaction and only provide glimpses into the plant mechanisms governing resistance to this pathogen. With the absence of commercially available resistant soybeans, chemical and cultural solutions are being used by farmers to manage SSR with limited…

Read More »

February 1, 2019

Whole-Genome Alignment and Comparative Annotation.

Rapidly improving sequencing technology coupled with computational developments in sequence assembly are making reference-quality genome assembly economical. Hundreds of vertebrate genome assemblies are now publicly available, and projects are being proposed to sequence thousands of additional species in the next few years. Such dense sampling of the tree of life should give an unprecedented new understanding of evolution and allow a detailed determination of the events that led to the wealth of biodiversity around us. To gain this knowledge, these new genomes must be compared through genome alignment (at the sequence level) and comparative annotation (at the gene level). However,…

Read More »

February 1, 2019

The Modern View of B Chromosomes Under the Impact of High Scale Omics Analyses.

Supernumerary B chromosomes (Bs) are extra karyotype units in addition to A chromosomes, and are found in some fungi and thousands of animals and plant species. Bs are uniquely characterized due to their non-Mendelian inheritance, and represent one of the best examples of genomic conflict. Over the last decades, their genetic composition, function and evolution have remained an unresolved query, although a few successful attempts have been made to address these phenomena. A classical concept based on cytogenetics and genetics is that Bs are selfish and abundant with DNA repeats and transposons, and in most cases, they do not carry…

Read More »

February 1, 2019

The bioinformatics tools for the genome assembly and analysis based on third-generation sequencing.

The application of third-generation sequencing (TGS) technology in genetics and genomics have provided opportunities to categorize and explore the individual genomic landscapes and mutations relevant for diagnosis and therapy using whole genome sequencing and de novo genome assembly. In general, the emerging TGS technology can produce high quality long reads for the determination of overlapping reads and transcript isoforms. However, this technology still faces challenges such as the accuracy for the identification of nucleotide bases and high error rates. Here, we surveyed 39 TGS-related tools for de novo assembly and genome analysis to identify the differences among their characteristics, such…

Read More »

February 1, 2019

Smashing Barriers in Biolistic Plant Transformation.

A foundation of modern biotechnology is the ability to stably introduce foreign DNA into an organism. The two most widely used methods, Agrobacterium-mediated transformation and biolistics, are both steeped in a rich history of creative exploration into the molecular unknown. Agrobacterium research accelerated in the early 1970s, particularly with the discovery of the large Ti (tumor-inducing) plasmid of Agrobacterium that contained a region of transfer DNA (T-DNA). Culturing plant calli in autoclaved jelly jars, and long before the advent of PCR, Southern blots were first used to show that T-DNA fragments could stably integrate into the nuclear genome (Chilton et…

Read More »

January 1, 2019

Single-Molecule Sequencing: Towards Clinical Applications.

In the past several years, single-molecule sequencing platforms, such as those by Pacific Biosciences and Oxford Nanopore Technologies, have become available to researchers and are currently being tested for clinical applications. They offer exceptionally long reads that permit direct sequencing through regions of the genome inaccessible or difficult to analyze by short-read platforms. This includes disease-causing long repetitive elements, extreme GC content regions, and complex gene loci. Similarly, these platforms enable structural variation characterization at previously unparalleled resolution and direct detection of epigenetic marks in native DNA. Here, we review how these technologies are opening up new clinical avenues that…

Read More »

January 1, 2019

Mycobiome diversity: high-throughput sequencing and identification of fungi.

Fungi are major ecological players in both terrestrial and aquatic environments by cycling organic matter and channelling nutrients across trophic levels. High-throughput sequencing (HTS) studies of fungal communities are redrawing the map of the fungal kingdom by hinting at its enormous - and largely uncharted - taxonomic and functional diversity. However, HTS approaches come with a range of pitfalls and potential biases, cautioning against unwary application and interpretation of HTS technologies and results. In this Review, we provide an overview and practical recommendations for aspects of HTS studies ranging from sampling and laboratory practices to data processing and analysis. We…

Read More »

January 1, 2019

Applying the latest advances in genomics and phenomics for trait discovery in polyploid wheat.

Improving traits in wheat has historically been challenging due to its large and polyploid genome, limited genetic diversity and in-field phenotyping constraints. However, within recent years many of these barriers have been lowered. The availability of a chromosome-level assembly of the wheat genome now facilitates a step-change in wheat genetics and provides a common platform for resources, including variation data, gene expression data and genetic markers. The development of sequenced mutant populations and gene-editing techniques now enables the rapid assessment of gene function in wheat directly. The ability to alter gene function in a targeted manner will unmask the effects…

Read More »

1 2 3 4 5 24

Subscribe for blog updates:

Archives