X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
May 1, 2019

Long-Read Sequencing Emerging in Medical Genetics

The wide implementation of next-generation sequencing (NGS) technologies has revolutionized the field of medical genetics. However, the short read lengths of currently used sequencing approaches pose a limitation for identification of structural variants, sequencing repetitive regions, phasing alleles and distinguishing highly homologous genomic regions. These limitations may significantly contribute to the diagnostic gap in patients with genetic disorders who have undergone standard NGS, like whole exome or even genome sequencing. Now, the emerging long-read sequencing (LRS) technologies may offer improvements in the characterization of genetic variation and regions that are difficult to assess with the currently prevailing NGS approaches. LRS…

Read More »

May 1, 2019

Centromeric Satellite DNAs: Hidden Sequence Variation in the Human Population.

The central goal of medical genomics is to understand the inherited basis of sequence variation that underlies human physiology, evolution, and disease. Functional association studies currently ignore millions of bases that span each centromeric region and acrocentric short arm. These regions are enriched in long arrays of tandem repeats, or satellite DNAs, that are known to vary extensively in copy number and repeat structure in the human population. Satellite sequence variation in the human genome is often so large that it is detected cytogenetically, yet due to the lack of a reference assembly and informatics tools to measure this variability,…

Read More »

May 1, 2019

Closing the Yield Gap for Cannabis: A Meta-Analysis of Factors Determining Cannabis Yield.

Until recently, the commercial production of Cannabis sativa was restricted to varieties that yielded high-quality fiber while producing low levels of the psychoactive cannabinoid tetrahydrocannabinol (THC). In the last few years, a number of jurisdictions have legalized the production of medical and/or recreational cannabis with higher levels of THC, and other jurisdictions seem poised to follow suit. Consequently, demand for industrial-scale production of high yield cannabis with consistent cannabinoid profiles is expected to increase. In this paper we highlight that currently, projected annual production of cannabis is based largely on facility size, not yield per square meter. This meta-analysis of…

Read More »

May 1, 2019

Next-Generation Sequencing and Emerging Technologies.

Genetic sequencing technologies are evolving at a rapid pace with major implications for research and clinical practice. In this review, the authors provide an updated overview of next-generation sequencing (NGS) and emerging methodologies. NGS has tremendously improved sequencing output while being more time and cost-efficient in comparison to Sanger sequencing. The authors describe short-read sequencing approaches, such as sequencing by synthesis, ion semiconductor sequencing, and nanoball sequencing. Third-generation long-read sequencing now promises to overcome many of the limitations of short-read sequencing, such as the ability to reliably resolve repeat sequences and large genomic rearrangements. By combining complementary methods with massively…

Read More »

May 1, 2019

Insect genomes: progress and challenges.

In the wake of constant improvements in sequencing technologies, numerous insect genomes have been sequenced. Currently, 1219 insect genome-sequencing projects have been registered with the National Center for Biotechnology Information, including 401 that have genome assemblies and 155 with an official gene set of annotated protein-coding genes. Comparative genomics analysis showed that the expansion or contraction of gene families was associated with well-studied physiological traits such as immune system, metabolic detoxification, parasitism and polyphagy in insects. Here, we summarize the progress of insect genome sequencing, with an emphasis on how this impacts research on pest control. We begin with a…

Read More »

April 1, 2019

The role of genomic structural variation in the genetic improvement of polyploid crops

Many of our major crop species are polyploids, containing more than one genome or set of chromosomes. Polyploid crops present unique challenges, including difficulties in genome assembly, in discriminating between multiple gene and sequence copies, and in genetic mapping, hindering use of genomic data for genetics and breeding. Polyploid genomes may also be more prone to containing structural variation, such as loss of gene copies or sequences (presence–absence variation) and the presence of genes or sequences in multiple copies (copy-number variation). Although the two main types of genomic structural variation commonly identified are presence–absence variation and copy-number variation, we propose…

Read More »

April 1, 2019

Prunus genetics and applications after de novo genome sequencing: achievements and prospects.

Prior to the availability of whole-genome sequences, our understanding of the structural and functional aspects of Prunus tree genomes was limited mostly to molecular genetic mapping of important traits and development of EST resources. With public release of the peach genome and others that followed, significant advances in our knowledge of Prunus genomes and the genetic underpinnings of important traits ensued. In this review, we highlight key achievements in Prunus genetics and breeding driven by the availability of these whole-genome sequences. Within the structural and evolutionary contexts, we summarize: (1) the current status of Prunus whole-genome sequences; (2) preliminary and…

Read More »

April 1, 2019

Reviving the Transcriptome Studies: An Insight into the Emergence of Single-molecule Transcriptome Sequencing

Advances in transcriptomics have provided an exceptional opportunity to study functional implications of the genetic variability. Technologies such as RNA-Seq have emerged as state-of-the-art techniques for transcriptome analysis that take advantage of high-throughput next-generation sequencing. However, similar to their predecessors, these approaches continue to impose major challenges on full-length transcript structure identification, primarily due to inherent limitations of read length. With the development of single-molecule sequencing (SMS) from PacBio, a growing number of studies on the transcriptome of different organisms have been reported. SMS has emerged as advantageous for comprehensive genome annotation including identification of novel genes/isoforms, long non-coding RNAs…

Read More »

April 1, 2019

Informatics for PacBio Long Reads.

In this article, we review the development of a wide variety of bioinformatics software implementing state-of-the-art algorithms since the introduction of SMRT sequencing technology into the field. We focus on the three major categories of development: read mapping (aligning to reference genomes), de novo assembly, and detection of structural variants. The long SMRT reads benefit all the applications, but they are achievable only through considering the nature of the long reads technology properly.

Read More »

April 1, 2019

Functional Genomics of Aspergillus oryzae: Strategies and Progress.

Aspergillus oryzae has been used for the production of traditional fermentation and has promising potential to produce primary and secondary metabolites. Due to the tough cell walls and high drug resistance of A. oryzae, functional genomic characterization studies are relatively limited. The exploitation of selection markers and genetic transformation methods are critical for improving A. oryzae fermentative strains. In this review, we describe the genome sequencing of various A. oryzae strains. Recently developed selection markers and transformation strategies are also described in detail, and the advantages and disadvantages of transformation methods are presented. Lastly, we introduce the recent progress on…

Read More »

April 1, 2019

Uncovering Missing Heritability in Rare Diseases.

The problem of 'missing heritability' affects both common and rare diseases hindering: discovery, diagnosis, and patient care. The 'missing heritability' concept has been mainly associated with common and complex diseases where promising modern technological advances, like genome-wide association studies (GWAS), were unable to uncover the complete genetic mechanism of the disease/trait. Although rare diseases (RDs) have low prevalence individually, collectively they are common. Furthermore, multi-level genetic and phenotypic complexity when combined with the individual rarity of these conditions poses an important challenge in the quest to identify causative genetic changes in RD patients. In recent years, high throughput sequencing has…

Read More »

April 1, 2019

The tech for the next decade: promises and challenges in genome biology.

The 19th Annual Advances in Genome Biology and Technology (AGBT) meeting came back to Marco Island, Florida, and was held in the renovated venue from 27 February to 2 March 2019. The meeting showed a variety of new technology, both in wet lab and in bioinformatics. This year's themes included single-cell technology and applications, spatially resolved gene expression measurements, new sequencing platforms, genome assembly and variation, and long and linked reads.

Read More »

March 1, 2019

Harnessing genomic information for livestock improvement.

The world demand for animal-based food products is anticipated to increase by 70% by 2050. Meeting this demand in a way that has a minimal impact on the environment will require the implementation of advanced technologies, and methods to improve the genetic quality of livestock are expected to play a large part. Over the past 10 years, genomic selection has been introduced in several major livestock species and has more than doubled genetic progress in some. However, additional improvements are required. Genomic information of increasing complexity (including genomic, epigenomic, transcriptomic and microbiome data), combined with technological advances for its cost-effective…

Read More »

March 1, 2019

Deciphering bacterial epigenomes using modern sequencing technologies.

Prokaryotic DNA contains three types of methylation: N6-methyladenine, N4-methylcytosine and 5-methylcytosine. The lack of tools to analyse the frequency and distribution of methylated residues in bacterial genomes has prevented a full understanding of their functions. Now, advances in DNA sequencing technology, including single-molecule, real-time sequencing and nanopore-based sequencing, have provided new opportunities for systematic detection of all three forms of methylated DNA at a genome-wide scale and offer unprecedented opportunities for achieving a more complete understanding of bacterial epigenomes. Indeed, as the number of mapped bacterial methylomes approaches 2,000, increasing evidence supports roles for methylation in regulation of gene expression,…

Read More »

1 2 3 4 24

Subscribe for blog updates:

Archives