Menu
July 7, 2019  |  

The cacao Criollo genome v2.0: an improved version of the genome for genetic and functional genomic studies.

Theobroma cacao L., native to the Amazonian basin of South America, is an economically important fruit tree crop for tropical countries as a source of chocolate. The first draft genome of the species, from a Criollo cultivar, was published in 2011. Although a useful resource, some improvements are possible, including identifying misassemblies, reducing the number of scaffolds and gaps, and anchoring un-anchored sequences to the 10 chromosomes.We used a NGS-based approach to significantly improve the assembly of the Belizian Criollo B97-61/B2 genome. We combined four Illumina large insert size mate paired libraries with 52x of Pacific Biosciences long reads to correct misassembled regions and reduced the number of scaffolds. We then used genotyping by sequencing (GBS) methods to increase the proportion of the assembly anchored to chromosomes.The scaffold number decreased from 4,792 in assembly V1 to 554 in V2 while the scaffold N50 size has increased from 0.47 Mb in V1 to 6.5 Mb in V2. A total of 96.7% of the assembly was anchored to the 10 chromosomes compared to 66.8% in the previous version. Unknown sites (Ns) were reduced from 10.8% to 5.7%. In addition, we updated the functional annotations and performed a new RefSeq structural annotation based on RNAseq evidence.Theobroma cacao Criollo genome version 2 will be a valuable resource for the investigation of complex traits at the genomic level and for future comparative genomics and genetics studies in cacao tree. New functional tools and annotations are available on the Cocoa Genome Hub ( http://cocoa-genome-hub.southgreen.fr ).


July 7, 2019  |  

Echinobase: an expanding resource for echinoderm genomic information

Echinobase, a web accessible information system of diverse genomics and biological data for the echinoderm clade, grew out of SpBase, the first echinoderm genome project for sea urchin, Strongylocentrotus purpuratus. Sea urchins and their relatives are utilitarian research models in fields ranging from marine biology to developmental biology and gene regulatory systems. Echinobase is a user-friendly web interface that links an array of biological data that would otherwise have been tedious and frustrating for researchers to extract and organize. The system hosts a powerful gene search engine, genomics browser and other bioinformatics tools to investigate genomics and high throughput data. The Echinobase information system now serves genomic information for eight echinoderm species: S. purpuratus, Strongylocentrotus fransciscanus, Allocentrotus fragilis, Lytechinus variegatus, Patiria miniata, Parastichopus parvimensis and Ophiothrix spiculata, Eucidaris tribuloides. Herein lies a description of the web information system, genomics data types and content hosted by Echinobase.org. The goal of Echinobase is to connect genomic information to various experimental data and accelerate the research in field of molecular biology, developmental process, gene regulatory networks and more recently engineering biological systems0.


July 7, 2019  |  

Hunting structural variants: Population by population

Until recently, most population-scale genome sequencing studies have focused on identifying single nucleotide variants (SNVs) to explore genetic differences between individuals. Like so many SNV-based genome-wide association studies, however, these efforts have had difficulty identifying causative genetic mechanisms underlying most complex functions. More and more, the genomics community has realised that structural variation is likely responsible for many of the traits and phenotypes that scientists have not been able to attribute to SNVs. This class of variants, defined as genetic differences of 50 bp or larger, accounts for most of the DNA sequence differences between any two people. Structural variants (SVs) are also already known to cause many common and rare diseases including ALS, schizophrenia, leukemia, Carney complex, and Huntington’s disease. Despite the importance of SVs, these larger variants have been understudied and underreported compared to their single-nucleotide counterparts. One reason is that they remain difficult to detect. Their length often means they cannot be fully spanned using short sequencing reads. They also often occur in highly repetitive or GC-rich regions of the genome, making them challenging targets. As such, this class of human genetic variation has remained vastly under-explored in global populations and is now ripe for discovery.


July 7, 2019  |  

Diversity in grain amaranths and relatives distinguished by genotyping by sequencing (GBS).

The genotyping by sequencing (GBS) method has become a molecular marker technology of choice for many crop plants because of its simultaneous discovery and evaluation of a large number of single nucleotide polymorphisms (SNPs) and utility for germplasm characterization. Genome representation and complexity reduction are the basis for GBS fingerprinting and can vary by species based on genome size and other sequence characteristics. Grain amaranths are a set of three species that were domesticated in the New World to be high protein, pseudo-cereal grain crops. The goal of this research was to employ the GBS technique for diversity evaluation in grain amaranth accessions and close relatives from sixAmaranthusspecies and determine genetic differences and similarities between groupings. A total of 10,668 SNPs were discovered in 94 amaranth accessions withApeKI complexity reduction and 10X genome coverage Illumina sequencing. The majority of the SNPs were species specific with 4,568 and 3,082 for the two grain amaranths originating in Central AmericaAmaranthus cruentus and A. hypochondriacusand 3,284 found amongst bothA. caudatus, originally domesticated in South America, and its close relative,A. quitensis. The distance matrix based on shared alleles provided information on the close relationships of the two cultivated Central American species with each other and of the wild and cultivated South American species with each other, as distinguished from the outgroup with two wild species,A. powelliiandA. retroflexus. The GBS data also distinguished admixture between each pair of species and the geographical origins and seed colors of the accessions. The SNPs we discovered here can be used for marker development for future amaranth study.


July 7, 2019  |  

Genomic resources and their influence on the detection of the signal of positive selection in genome scans.

Genome scans represent powerful approaches to investigate the action of natural selection on the genetic variation of natural populations and to better understand local adaptation. This is very useful, for example, in the field of conservation biology and evolutionary biology. Thanks to Next Generation Sequencing, genomic resources are growing exponentially, improving genome scan analyses in non-model species. Thousands of SNPs called using Reduced Representation Sequencing are increasingly used in genome scans. Besides, genome sequences are also becoming increasingly available, allowing better processing of short-read data, offering physical localization of variants, and improving haplotype reconstruction and data imputation. Ultimately, genome sequences are also becoming the raw material for selection inferences. Here, we discuss how the increasing availability of such genomic resources, notably genome sequences, influences the detection of signals of selection. Mainly, increasing data density and having the information of physical linkage data expand genome scans by (i) improving the overall quality of the data, (ii) helping the reconstruction of demographic history for the population studied to decrease false-positive rates and (iii) improving the statistical power of methods to detect the signal of selection. Of particular importance, the availability of a high-quality reference genome can improve the detection of the signal of selection by (i) allowing matching the potential candidate loci to linked coding regions under selection, (ii) rapidly moving the investigation to the gene and function and (iii) ensuring that the highly variable regions of the genomes that include functional genes are also investigated. For all those reasons, using reference genomes in genome scan analyses is highly recommended. © 2015 John Wiley & Sons Ltd.


July 7, 2019  |  

The Vigna Genome Server, ‘VigGS’: A genomic knowledge base of the genus Vigna based on high-quality, annotated genome sequence of the azuki bean, Vigna angularis (Willd.) Ohwi & Ohashi.

The genus Vigna includes legume crops such as cowpea, mungbean and azuki bean, as well as >100 wild species. A number of the wild species are highly tolerant to severe environmental conditions including high-salinity, acid or alkaline soil; drought; flooding; and pests and diseases. These features of the genus Vigna make it a good target for investigation of genetic diversity in adaptation to stressful environments; however, a lack of genomic information has hindered such research in this genus. Here, we present a genome database of the genus Vigna, Vigna Genome Server (‘VigGS’, http://viggs.dna.affrc.go.jp), based on the recently sequenced azuki bean genome, which incorporates annotated exon-intron structures, along with evidence for transcripts and proteins, visualized in GBrowse. VigGS also facilitates user construction of multiple alignments between azuki bean genes and those of six related dicot species. In addition, the database displays sequence polymorphisms between azuki bean and its wild relatives and enables users to design primer sequences targeting any variant site. VigGS offers a simple keyword search in addition to sequence similarity searches using BLAST and BLAT. To incorporate up to date genomic information, VigGS automatically receives newly deposited mRNA sequences of pre-set species from the public database once a week. Users can refer to not only gene structures mapped on the azuki bean genome on GBrowse but also relevant literature of the genes. VigGS will contribute to genomic research into plant biotic and abiotic stresses and to the future development of new stress-tolerant crops.© The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.


July 7, 2019  |  

A phylogenetic and phenotypic analysis of Salmonella enterica serovar Weltevreden, an emerging agent of diarrheal disease in tropical regions.

Salmonella enterica serovar Weltevreden (S. Weltevreden) is an emerging cause of diarrheal and invasive disease in humans residing in tropical regions. Despite the regional and international emergence of this Salmonella serovar, relatively little is known about its genetic diversity, genomics or virulence potential in model systems. Here we used whole genome sequencing and bioinformatics analyses to define the phylogenetic structure of a diverse global selection of S. Weltevreden. Phylogenetic analysis of more than 100 isolates demonstrated that the population of S. Weltevreden can be segregated into two main phylogenetic clusters, one associated predominantly with continental Southeast Asia and the other more internationally dispersed. Subcluster analysis suggested the local evolution of S. Weltevreden within specific geographical regions. Four of the isolates were sequenced using long read sequencing to produce high quality reference genomes. Phenotypic analysis in Hep-2 cells and in a murine infection model indicated that S. Weltevreden were significantly attenuated in these models compared to the classical S. Typhimurium reference strain SL1344. Our work outlines novel insights into this important emerging pathogen and provides a baseline understanding for future research studies.


July 7, 2019  |  

Horizontal gene acquisitions, mobile element proliferation, and genome decay in the host-restricted plant pathogen Erwinia tracheiphila.

Modern industrial agriculture depends on high-density cultivation of genetically similar crop plants, creating favorable conditions for the emergence of novel pathogens with increased fitness in managed compared with ecologically intact settings. Here, we present the genome sequence of six strains of the cucurbit bacterial wilt pathogen Erwinia tracheiphila (Enterobacteriaceae) isolated from infected squash plants in New York, Pennsylvania, Kentucky, and Michigan. These genomes exhibit a high proportion of recent horizontal gene acquisitions, invasion and remarkable amplification of mobile genetic elements, and pseudogenization of approximately 20% of the coding sequences. These genome attributes indicate that E. tracheiphila recently emerged as a host-restricted pathogen. Furthermore, chromosomal rearrangements associated with phage and transposable element proliferation contribute to substantial differences in gene content and genetic architecture between the six E. tracheiphila strains and other Erwinia species. Together, these data lead us to hypothesize that E. tracheiphila has undergone recent evolution through both genome decay (pseudogenization) and genome expansion (horizontal gene transfer and mobile element amplification). Despite evidence of dramatic genomic changes, the six strains are genetically monomorphic, suggesting a recent population bottleneck and emergence into E. tracheiphila’s current ecological niche. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Fully closed genome sequences of five type strains of the genus Cronobacter and one Cronobacter sakazakii strain.

Cronobacteris associated with infant infections and the consumption of reconstituted infant formula. Here we sequenced and closed six genomes ofC. condimenti(T),C. muytjensii(T),C. universalis(T),C. malonaticus(T),C. dublinensis(T), andC. sakazakiithat can be used as reference genomes in single nucleotide polymorphism (SNP)-based next-generation sequencing (NGS) analysis for source tracking investigations. Copyright © 2016 Moine et al.


July 7, 2019  |  

The Mycobacterium phlei genome: expectations and surprises.

Mycobacterium phlei, a nontuberculosis mycobacterial species, was first described in 1898–1899. We present the complete genome sequence for the M. phlei CCUG21000T type strain and the draft genomes for four additional strains. The genome size for all fiveis 5.3 Mb with 69.4% Guanine-Cytosine content. This is ˜0.35 Mbp smaller than the previously reported M. phlei RIVM draft genome. The size difference is attributed partly to large bacteriophage sequence fragments in the M. phlei RIVM genome. Comparative analysis revealed the following: 1) A CRISPR system similar to Type 1E (cas3) in M. phlei RIVM; 2) genes involved in polyamine metabolism and transport (potAD, potF) that are absent in other mycobacteria, and 3) strain-specific variations in the number of s-factor genes. Moreover, M. phlei has as many as 82 mce (mammalian cell entry) homologs and many of the horizontally acquired genes in M. phlei are present in other environmental bacteria including mycobacteria that share similar habitat. Phylogenetic analysis based on 693 Mycobacterium core genes present in all complete mycobacterial genomes suggested that its closest neighbor is Mycobacterium smegmatis JS623 and Mycobacterium rhodesiae NBB3, while it is more distant to M. smegmatis mc2 155.


July 7, 2019  |  

Refined Pichia pastoris reference genome sequence.

Strains of the species Komagataella phaffii are the most frequently used “Pichia pastoris” strains employed for recombinant protein production as well as studies on peroxisome biogenesis, autophagy and secretory pathway analyses. Genome sequencing of several different P. pastoris strains has provided the foundation for understanding these cellular functions in recent genomics, transcriptomics and proteomics experiments. This experimentation has identified mistakes, gaps and incorrectly annotated open reading frames in the previously published draft genome sequences. Here, a refined reference genome is presented, generated with genome and transcriptome sequencing data from multiple P. pastoris strains. Twelve major sequence gaps from 20 to 6000 base pairs were closed and 5111 out of 5256 putative open reading frames were manually curated and confirmed by RNA-seq and published LC-MS/MS data, including the addition of new open reading frames (ORFs) and a reduction in the number of spliced genes from 797 to 571. One chromosomal fragment of 76kbp between two previous gaps on chromosome 1 and another 134kbp fragment at the end of chromosome 4, as well as several shorter fragments needed re-orientation. In total more than 500 positions in the genome have been corrected. This reference genome is presented with new chromosomal numbering, positioning ribosomal repeats at the distal ends of the four chromosomes, and includes predicted chromosomal centromeres as well as the sequence of two linear cytoplasmic plasmids of 13.1 and 9.5kbp found in some strains of P. pastoris. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019  |  

The Atlantic salmon genome provides insights into rediploidization.

The whole-genome duplication 80 million years ago of the common ancestor of salmonids (salmonid-specific fourth vertebrate whole-genome duplication, Ss4R) provides unique opportunities to learn about the evolutionary fate of a duplicated vertebrate genome in 70 extant lineages. Here we present a high-quality genome assembly for Atlantic salmon (Salmo salar), and show that large genomic reorganizations, coinciding with bursts of transposon-mediated repeat expansions, were crucial for the post-Ss4R rediploidization process. Comparisons of duplicate gene expression patterns across a wide range of tissues with orthologous genes from a pre-Ss4R outgroup unexpectedly demonstrate far more instances of neofunctionalization than subfunctionalization. Surprisingly, we find that genes that were retained as duplicates after the teleost-specific whole-genome duplication 320 million years ago were not more likely to be retained after the Ss4R, and that the duplicate retention was not influenced to a great extent by the nature of the predicted protein interactions of the gene products. Finally, we demonstrate that the Atlantic salmon assembly can serve as a reference sequence for the study of other salmonids for a range of purposes.


July 7, 2019  |  

Haemonchus contortus: genome structure, organization and comparative genomics

One of the first genome sequencing projects for a parasitic nematode was that for Haemonchus contortus. The open access data from the Wellcome Trust Sanger Institute provided a valuable early resource for the research community, particularly for the identification of specific genes and genetic markers. Later, a second sequencing project was initiated by the University of Melbourne, and the two draft genome sequences for H. contortus were published back-to-back in 2013. There is a pressing need for long-range genomic information for genetic mapping, population genetics and functional genomic studies, so we are continuing to improve the Wellcome Trust Sanger Institute assembly to provide a finished reference genome for H. contortus. This review describes this process, compares the H. contortus genome assemblies with draft genomes from other members of the strongylid group and discusses future directions for parasite genomics using the H. contortus model. Copyright © 2016 Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Genome sequence and analysis of a stress-tolerant, wild-derived strain of Saccharomyces cerevisiae used in biofuels research

The genome sequences of more than 100 strains of the yeast Saccharomyces cerevisiae have been published. Unfortunately, most of these genome assemblies contain dozens to hundreds of gaps at repetitive sequences, including transposable elements, tRNAs, and subtelomeric regions, which is where novel genes generally reside. Relatively few strains have been chosen for genome sequencing based on their biofuel production potential, leaving an additional knowledge gap. Here, we describe the nearly complete genome sequence of GLBRCY22-3 (Y22-3), a strain of S. cerevisiae derived from the stress-tolerant wild strain NRRL YB-210 and subsequently engineered for xylose metabolism. After benchmarking several genome assembly approaches, we developed a pipeline to integrate Pacific Biosciences (PacBio) and Illumina sequencing data and achieved one of the highest quality genome assemblies for any S. cerevisiae strain. Specifically, the contig N50 is 693 kbp, and the sequences of most chromosomes, the mitochondrial genome, and the 2-micron plasmid are complete. Our annotation predicts 92 genes that are not present in the reference genome of the laboratory strain S288c, over 70% of which were expressed. We predicted functions for 43 of these genes, 28 of which were previously uncharacterized and unnamed. Remarkably, many of these genes are predicted to be involved in stress tolerance and carbon metabolism and are shared with a Brazilian bioethanol production strain, even though the strains differ dramatically at most genetic loci. The Y22-3 genome sequence provides an exceptionally high-quality resource for basic and applied research in bioenergy and genetics. Copyright © 2016 McIlwain et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.