Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.


Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.


You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
June 1, 2017

Genetic analysis of Neisseria meningitidis sequence type 7 serogroup X originating from serogroup A.

Neisseria meningitidis causes meningococcal disease, often resulting in fulminant meningitis, sepsis, and death. Vaccination programs have been developed to prevent infection of this pathogen, but serogroup replacement is a problem. Capsular switching has been an important survival mechanism for N. meningitidis, allowing the organism to evolve in the present vaccine era. However, related mechanisms have not been completely elucidated. Genetic analysis of capsular switching between diverse serogroups would help further our understanding of this pathogen. In this study, we analyzed the genetic characteristics of the sequence type 7 (ST-7) serogroup X strain that was predicted to arise from ST-7 serogroup…

Read More »

April 1, 2017

Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure

There is a misinterpretation in the literature regarding the variable orientation of the small single copy region of plastid genomes (plastomes). The common phenomenon of small and large single copy inversion, hypothesized to occur through intramolecular recombination between inverted repeats (IR) in a circular, single unit-genome, in fact, more likely occurs through recombination-dependent replication (RDR) of linear plastome templates. If RDR can be primed through both intra- and intermolecular recombination, then this mechanism could not only create inversion isomers of so-called single copy regions, but also an array of alternative sequence arrangements.We used Illumina paired-end and PacBio single-molecule real-time (SMRT)…

Read More »

March 1, 2017

Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history.

Bats harbor a large diversity of coronaviruses (CoVs), several of which are related to zoonotic pathogens that cause severe disease in humans. Our screening of bat samples collected in Kenya from 2007 to 2010 not only detected RNA from several novel CoVs but, more significantly, identified sequences that were closely related to human CoVs NL63 and 229E, suggesting that these two human viruses originate from bats. We also demonstrated that human CoV NL63 is a recombinant between NL63-like viruses circulating in Triaenops bats and 229E-like viruses circulating in Hipposideros bats, with the breakpoint located near 5' and 3' ends of…

Read More »

October 27, 2016

Recombination suppression is unlikely to contribute to speciation in sympatric Heliconius butterflies

Mechanisms that suppress recombination are known to help maintain species barriers by preventing the breakup of co-adapted gene combinations. The sympatric butterfly species H. melpomene and H. cydno are separated by many strong barriers, but the species still hybridise infrequently in the wild, with around 40% of the genome influenced by introgression. We tested the hypothesis that genetic barriers between the species are reinforced by inversions or other mechanisms to reduce between-species recombination rate. We constructed fine-scale recombination maps for Panamanian populations of both species and hybrids to directly measure recombination rate between these species, and generated long sequence reads…

Read More »

August 5, 2016

Genomic recombination leading to decreased virulence of group B Streptococcus in a mouse model of adult invasive disease.

Adult invasive disease caused by Group B Streptococcus (GBS) is increasing worldwide. Whole-genome sequencing (WGS) now permits rapid identification of recombination events, a phenomenon that occurs frequently in GBS. Using WGS, we described that strain NGBS375, a capsular serotype V GBS isolate of sequence type (ST)297, has an ST1 genomic background but has acquired approximately 300 kbp of genetic material likely from an ST17 strain. Here, we examined the virulence of this strain in an in vivo model of GBS adult invasive infection. The mosaic ST297 strain showed intermediate virulence, causing significantly less systemic infection and reduced mortality than a…

Read More »

July 2, 2016

Comparative genomics of Campylobacter fetus from reptiles and mammals reveals divergent evolution in host-associated lineages.

Campylobacter fetus currently comprises three recognized subspecies, which display distinct host association. Campylobacter fetus subsp. fetus and C fetus subsp. venerealis are both associated with endothermic mammals, primarily ruminants, whereas C fetus subsp. testudinum is primarily associated with ectothermic reptiles. Both C. fetus subsp. testudinum and C. fetus subsp. fetus have been associated with severe infections, often with a systemic component, in immunocompromised humans. To study the genetic factors associated with the distinct host dichotomy in C. fetus, whole-genome sequencing and comparison of mammal- and reptile-associated C fetus was performed. The genomes of C fetus subsp. testudinum isolated from either…

Read More »

March 23, 2016

High quality maize centromere 10 sequence reveals evidence of frequent recombination events.

The ancestral centromeres of maize contain long stretches of the tandemly arranged CentC repeat. The abundance of tandem DNA repeats and centromeric retrotransposons (CR) has presented a significant challenge to completely assembling centromeres using traditional sequencing methods. Here, we report a nearly complete assembly of the 1.85 Mb maize centromere 10 from inbred B73 using PacBio technology and BACs from the reference genome project. The error rates estimated from overlapping BAC sequences are 7 × 10(-6) and 5 × 10(-5) for mismatches and indels, respectively. The number of gaps in the region covered by the reassembly was reduced from 140…

Read More »

February 10, 2016

Genomic analyses reveal that partial sequence of an earlier pseudorabies virus in China is originated from a Bartha-vaccine-like strain.

Pseudorabies virus (PRV), the causative agent of Aujeszky?s disease, has gained increased attention in China in recent years as a result of the outbreak of emergent pseudorabies. Several genomic and partial sequences are available for Chinese emergent and European-American strains of PRV, but limited sequence data exist for the earlier Chinese strains. In this study, we determined the complete genomic sequence of one earlier Chinese strain SC and one emergent strain HLJ8. Compared with other known sequences, we demonstrated that PRV strains from distinct geographical regions displayed divergent evolution. Additionally, we report for the first time, a recombination event between…

Read More »

December 3, 2015

Insights into sex chromosome evolution and aging from the genome of a short-lived fish.

The killifish Nothobranchius furzeri is the shortest-lived vertebrate that can be bred in the laboratory. Its rapid growth, early sexual maturation, fast aging, and arrested embryonic development (diapause) make it an attractive model organism in biomedical research. Here, we report a draft sequence of its genome that allowed us to uncover an intra-species Y chromosome polymorphism representing-in real time-different stages of sex chromosome formation that display features of early mammalian XY evolution "in action." Our data suggest that gdf6Y, encoding a TGF-ß family growth factor, is the master sex-determining gene in N. furzeri. Moreover, we observed genomic clustering of aging-related genes,…

Read More »

August 1, 2015

Chaos of rearrangements in the mating-type chromosomes of the anther-smut fungus Microbotryum lychnidis-dioicae.

Sex chromosomes in plants and animals and fungal mating-type chromosomes often show exceptional genome features, with extensive suppression of homologous recombination and cytological differentiation between members of the diploid chromosome pair. Despite strong interest in the genetics of these chromosomes, their large regions of suppressed recombination often are enriched in transposable elements and therefore can be challenging to assemble. Here we show that the latest improvements of the PacBio sequencing yield assembly of the whole genome of the anther-smut fungus, Microbotryum lychnidis-dioicae (the pathogenic fungus causing anther-smut disease of Silene latifolia), into finished chromosomes or chromosome arms, even for the…

Read More »

November 1, 2014

The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes.

Whole-genome sequences are now available for many microbial species and clades, however, existing whole-genome alignment methods are limited in their ability to perform sequence comparisons of multiple sequences simultaneously. Here we present the Harvest suite of core-genome alignment and visualization tools for the rapid and simultaneous analysis of thousands of intraspecific microbial strains. Harvest includes Parsnp, a fast core-genome multi-aligner, and Gingr, a dynamic visual platform. Together they provide interactive core-genome alignments, variant calls, recombination detection, and phylogenetic trees. Using simulated and real data we demonstrate that our approach exhibits unrivaled speed while maintaining the accuracy of existing methods. The…

Read More »

January 1, 2014

Insights into the preservation of the homomorphic sex-determining chromosome of Aedes aegypti from the discovery of a male-biased gene tightly linked to the M-locus.

The preservation of a homomorphic sex-determining chromosome in some organisms without transformation into a heteromorphic sex chromosome is a long-standing enigma in evolutionary biology. A dominant sex-determining locus (or M-locus) in an undifferentiated homomorphic chromosome confers the male phenotype in the yellow fever mosquito Aedes aegypti. Genetic evidence suggests that the M-locus is in a nonrecombining region. However, the molecular nature of the M-locus has not been characterized. Using a recently developed approach based on Illumina sequencing of male and female genomic DNA, we identified a novel gene, myo-sex, that is present almost exclusively in the male genome but can…

Read More »

Subscribe for blog updates: