July 7, 2019  |  

Surveillance of Klebsiella pneumoniae and antibiotic resistance a retrospective and comparative study through a period in Nepal

Among the Enterobacteriacea Klebsiella pneumoniae is for the most part obtained from clinical samples and most probable cause of a typical form of primary pneumonia. It can also responsible for a variety of extrapulmonary infections, counting enteritis and meningitis in infants, urinary tract infections in children and adults and septicaemia in all age groups. Like wise these pathogens are significant cause of hospital acquired infections right through the world. The remarkable increase in the prevalence of antibiotic resistance in bacteria noticed in recent years represents a considerable challenge to public health microbiology worldwide. Klebsiellae have a tendency to possess antibiotic resistant plasmids; as a result, infections with multiple antibiotic-resistant strains can be likely. Only some degree of studies had been accounted in this regard from Nepal. The study was performed from January 1999 to March 2001. To come upon the existing dated antibiotic resistance pattern of Klebsiella pneumoniae. The study was carried out at TUTH laboratory with the objectives to ascertain the prevalence of Klebsiella pneumoniae in conjunction with to calculate the significance antibiotic resistance correlation between various antibiotics. By which the later 15 years analysis of antibiotic resistance was evaluated with comparison to this study.In this scrutiny the result was established that the numbers of total isolates including both klebsiella pneumoniae and other Kebsiella species were 62 from urine samples, 78 from pus samples and 96 from sputum samples and 34 from other miscellaneous samples. In this study positive culture for Klebsiella pneumoniae was 32.83% for sputum samples, 23.62.% for urine samples and 24.57% for pus samples. Majority of the strains isolated were sensitive to ß- lactamases, Floroquinolones, Aminoglycosides, Tetracycline and Cotrimoxazole, combined antibiotics. The current review study from 1999 to 2014 discloses the frequency of infections due to klebsiella pneumoniae strains in the hospitalized patients and their tendency towards antibiotic resistance was on the increase. Large quantity of antibiotics exploited for human therapy has resulted in the selection of pathogenic bacteria resistant to multiple antimicrobial drugs. This has become a vital clinical and infection control challenge, particularly in resource-limited settings with far above the ground a raising rate of antimicrobial resistance.

July 7, 2019  |  

Genome sequences of two multidrug-resistant Acinetobacter baumannii clinical strains isolated from Southern India

Acinetobacter baumannii is an emerging nosocomial pathogen causing infections worldwide. In this study, we determined the genome sequences of two multidrug-resistant A. baumannii clinical strains isolated from a hospital in southern India. Genome analyses indicate that both the strains harbor numerous horizontally transferred genetic elements and antibiotic resistance cassettes. Copyright © 2015 Balaji et al.

July 7, 2019  |  

Genome sequences of Corynebacterium pseudotuberculosis strains 48252 (human, pneumonia), CS_10 (lab strain), Ft_2193/ 67 (goat, pus), and CCUG 27541.

Here we report the genome sequencess of four Corynebacterium pseudotuberculosis strains. These include a strain isolated from a patient with C. pseudotuberculosis pneumonia (48252), a strain isolated from pus in goat (Ft_2193/67), a laboratory strain originating from strain Ft_2193/67 (CS_10), and the draft genome of an equine reference strain, CCUG 27541. Copyright © 2014 Håvelsrud et al.

July 7, 2019  |  

Complete genome sequence of a community-associated methicillin-resistant Staphylococcusaureus hypervirulent strain, USA300-C2406, isolated from a patient with a lethal case of necrotizing pneumonia.

USA300 is a predominant community-associated methicillin-resistant Staphylococcus aureus strain causing significant morbidity and mortality. We present here the full annotated genome of a USA300 hypervirulent clinical strain, USA300-C2406, isolated from a patient with a lethal case of necrotizing pneumonia, to gain a better understanding of USA300 hypervirulence. Copyright © 2017 McClure and Zhang.

July 7, 2019  |  

Complete genome sequences of two geographically distinct Legionella micdadei clinical isolates.

Legionella is a highly diverse genus of intracellular bacterial pathogens that cause Legionnaire’s disease (LD), an often severe form of pneumonia. Two L. micdadei sp. clinical isolates, obtained from patients hospitalized with LD from geographically distinct areas, were sequenced using PacBio SMRT cell technology, identifying incomplete phage regions, which may impact virulence. Copyright © 2017 Osborne et al.

July 7, 2019  |  

Complete genome sequence of Mycoplasma bovis strain 08M.

Mycoplasma bovis is a major bacterial pathogen that can cause respiratory disease, mastitis, and arthritis in cattle. We report here the complete and annotated genome sequence of M. bovis strain 08M, isolated from a calf lung with pneumonia in China. Copyright © 2017 Chen et al.

July 7, 2019  |  

Complete genome sequence of a Legionella longbeachae serogroup 1 strain isolated from a patient with Legionnaires’ disease.

Legionella longbeachae serogroup 1, predominantly found in soil and composted plant material, causes the majority of cases of Legionnaires’ disease (LD) in New Zealand. Here, we report the complete genome sequence of an L. longbeachae serogroup 1 (sg1) isolate derived from a patient hospitalized with LD in Christchurch, New Zealand. Copyright © 2017 Slow et al.

July 7, 2019  |  

Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts.

Pneumocystis jirovecii is a major cause of life-threatening pneumonia in immunosuppressed patients including transplant recipients and those with HIV/AIDS, yet surprisingly little is known about the biology of this fungal pathogen. Here we report near complete genome assemblies for three Pneumocystis species that infect humans, rats and mice. Pneumocystis genomes are highly compact relative to other fungi, with substantial reductions of ribosomal RNA genes, transporters, transcription factors and many metabolic pathways, but contain expansions of surface proteins, especially a unique and complex surface glycoprotein superfamily, as well as proteases and RNA processing proteins. Unexpectedly, the key fungal cell wall components chitin and outer chain N-mannans are absent, based on genome content and experimental validation. Our findings suggest that Pneumocystis has developed unique mechanisms of adaptation to life exclusively in mammalian hosts, including dependence on the lungs for gas and nutrients and highly efficient strategies to escape both host innate and acquired immune defenses.

July 7, 2019  |  

Complete genome sequences of six Legionella pneumophila isolates from two collocated outbreaks of Legionnaires’ disease in 2005 and 2008 in Sarpsborg/Fredrikstad, Norway.

Here, we report the complete genome sequences of Legionella pneumophila isolates from two collocated outbreaks of Legionnaires’ disease in 2005 and 2008 in Sarpsborg/Fredrikstad, Norway. One clinical and two environmental isolates were sequenced from each outbreak. The genome of all six isolates consisted of a 3.36 Mb-chromosome, while the 2005 genomes featured an additional 68 kb-episome sharing high sequence similarity with the L. pneumophila Lens plasmid. All six genomes contained multiple mobile genetic elements including novel combinations of type-IVA secretion systems. A comparative genomics study will be launched to resolve the genetic relationship between the L. pneumophila isolates. Copyright © 2016 Dybwad et al.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.