X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
January 1, 2018

Plasmodium knowlesi: a superb in vivo nonhuman primate model of antigenic variation in malaria.

Antigenic variation in malaria was discovered in Plasmodium knowlesi studies involving longitudinal infections of rhesus macaques (M. mulatta). The variant proteins, known as the P. knowlesi Schizont Infected Cell Agglutination (SICA) antigens and the P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) antigens, expressed by the SICAvar and var multigene families, respectively, have been studied for over 30 years. Expression of the SICA antigens in P. knowlesi requires a splenic component, and specific antibodies are necessary for variant antigen switch events in vivo. Outstanding questions revolve around the role of the spleen and the mechanisms by which the expression of these…

Read More »

November 1, 2017

Repetitive sequences in malaria parasite proteins.

Five species of parasite cause malaria in humans with the most severe disease caused by Plasmodium falciparum. Many of the proteins encoded in the P. falciparum genome are unusually enriched in repetitive low-complexity sequences containing a limited repertoire of amino acids. These repetitive sequences expand and contract dynamically and are among the most rapidly changing sequences in the genome. The simplest repetitive sequences consist of single amino acid repeats such as poly-asparagine tracts that are found in approximately 25% of P. falciparum proteins. More complex repeats of two or more amino acids are also common in diverse parasite protein families.…

Read More »

August 11, 2017

Increased risk of low birth weight in women with placental malaria associated with P. falciparum VAR2CSA clade.

Pregnancy associated malaria (PAM) causes adverse pregnancy and birth outcomes owing to Plasmodium falciparum accumulation in the placenta. Placental accumulation is mediated by P. falciparum protein VAR2CSA, a leading PAM-specific vaccine target. The extent of its antigen diversity and impact on clinical outcomes remain poorly understood. Through amplicon deep-sequencing placental malaria samples from women in Malawi and Benin, we assessed sequence diversity of VAR2CSA's ID1-DBL2x region, containing putative vaccine targets and estimated associations of specific clades with adverse birth outcomes. Overall, var2csa diversity was high and haplotypes subdivided into five clades, the largest two defined by homology to parasites strains,…

Read More »

August 8, 2017

Chromosome end repair and genome stability in Plasmodium falciparum.

The human malaria parasite Plasmodium falciparum replicates within circulating red blood cells, where it is subjected to conditions that frequently cause DNA damage. The repair of DNA double-stranded breaks (DSBs) is thought to rely almost exclusively on homologous recombination (HR), due to a lack of efficient nonhomologous end joining. However, given that the parasite is haploid during this stage of its life cycle, the mechanisms involved in maintaining genome stability are poorly understood. Of particular interest are the subtelomeric regions of the chromosomes, which contain the majority of the multicopy variant antigen-encoding genes responsible for virulence and disease severity. Here,…

Read More »

August 1, 2017

A new method for sequencing the hypervariable Plasmodium falciparum gene var2csa from clinical samples.

VAR2CSA, a member of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, mediates the binding of P. falciparum-infected erythrocytes to chondroitin sulfate A, a surface-associated molecule expressed in placental cells, and plays a central role in the pathogenesis of placental malaria. VAR2CSA is a target of naturally acquired immunity and, as such, is a leading vaccine candidate against placental malaria. This protein is very polymorphic and technically challenging to sequence. Published var2csa sequences, mostly limited to specific domains, have been generated through the sequencing of cloned PCR amplicons using capillary electrophoresis, a method that is both time consuming and…

Read More »

July 17, 2017

Proteomic analysis of extracellular vesicles from a Plasmodium falciparum Kenyan clinical isolate defines a core parasite secretome.

Many pathogens secrete effector molecules to subvert host immune responses, to acquire nutrients, and/or to prepare host cells for invasion. One of the ways that effector molecules are secreted is through extracellular vesicles (EVs) such as exosomes. Recently, the malaria parasite P. falciparum has been shown to produce EVs that can mediate transfer of genetic material between parasites and induce sexual commitment. Characterizing the content of these vesicles may improve our understanding of P. falciparum pathogenesis and virulence.Previous studies of P. falciparum EVs have been limited to long-term adapted laboratory isolates. In this study, we isolated EVs from a Kenyan…

Read More »

June 17, 2017

An improved Plasmodium cynomolgi genome assembly reveals an unexpected methyltransferase gene expansion.

Plasmodium cynomolgi, a non-human primate malaria parasite species, has been an important model parasite since its discovery in 1907. Similarities in the biology of P. cynomolgi to the closely related, but less tractable, human malaria parasite P. vivax make it the model parasite of choice for liver biology and vaccine studies pertinent to P. vivax malaria. Molecular and genome-scale studies of P. cynomolgi have relied on the current reference genome sequence, which remains highly fragmented with 1,649 unassigned scaffolds and little representation of the subtelomeres.  Methods: Using long-read sequence data (Pacific Biosciences SMRT technology), we assembled and annotated a new…

Read More »

March 1, 2017

A feast of malaria parasite genomes.

The Plasmodium genus has evolved over time and across hosts, complexifying our understanding of malaria. In a recent Nature paper, Rutledge et al. (2017) describe the genome sequences of three major human malaria parasite species, providing insight into Plasmodium evolution and raising the question of how many species there are. Copyright © 2017 Elsevier Inc. All rights reserved.

Read More »

February 6, 2017

Antibody-independent mechanisms regulate the establishment of chronic Plasmodium infection.

Malaria is caused by parasites of the genus Plasmodium. All human-infecting Plasmodium species can establish long-lasting chronic infections(1-5), creating an infectious reservoir to sustain transmission(1,6). It is widely accepted that the maintenance of chronic infection involves evasion of adaptive immunity by antigenic variation(7). However, genes involved in this process have been identified in only two of five human-infecting species: Plasmodium falciparum and Plasmodium knowlesi. Furthermore, little is understood about the early events in the establishment of chronic infection in these species. Using a rodent model we demonstrate that from the infecting population, only a minority of parasites, expressing one of…

Read More »

February 2, 2017

Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution.

Elucidation of the evolutionary history and interrelatedness of Plasmodium species that infect humans has been hampered by a lack of genetic information for three human-infective species: P. malariae and two P. ovale species (P. o. curtisi and P. o. wallikeri). These species are prevalent across most regions in which malaria is endemic and are often undetectable by light microscopy, rendering their study in human populations difficult. The exact evolutionary relationship of these species to the other human-infective species has been contested. Using a new reference genome for P. malariae and a manually curated draft P. o. curtisi genome, we are…

Read More »

December 9, 2016

Expansion of lysine-rich repeats in Plasmodium proteins generates novel localisation sequences that target the periphery of the host erythrocyte.

Repetitive low-complexity sequences, mostly assumed to have no function, are common in proteins that are exported by the malaria parasite into its host erythrocyte. We identify a group of exported proteins containing short lysine-rich tandemly repeated sequences that are sufficient to localise to the erythrocyte periphery where key virulence-related modifications to the plasma membrane and the underlying cytoskeleton are known to occur. Efficiency of targeting is dependent on repeat number, indicating that novel targeting modules could evolve by expansion of short lysine-rich sequences. Indeed, expression GARP fragments from different species shows that two novel targeting sequences have arisen via the…

Read More »

November 16, 2016

Variant exported blood-stage proteins encoded by Plasmodium multigene families are expressed in liver stages where they are exported into the parasitophorous vacuole.

Many variant proteins encoded by Plasmodium-specific multigene families are exported into red blood cells (RBC). P. falciparum-specific variant proteins encoded by the var, stevor and rifin multigene families are exported onto the surface of infected red blood cells (iRBC) and mediate interactions between iRBC and host cells resulting in tissue sequestration and rosetting. However, the precise function of most other Plasmodium multigene families encoding exported proteins is unknown. To understand the role of RBC-exported proteins of rodent malaria parasites (RMP) we analysed the expression and cellular location by fluorescent-tagging of members of the pir, fam-a and fam-b multigene families. Furthermore,…

Read More »

September 1, 2016

High-quality genome assembly and annotation for Plasmodium coatneyi, generated using single-molecule real-time PacBio technology.

Plasmodium coatneyi is a protozoan parasite species that causes simian malaria and is an excellent model for studying disease caused by the human malaria parasite, P. falciparum Here we report the complete (nontelomeric) genome sequence of P. coatneyi Hackeri generated by the application of only Pacific Biosciences RS II (PacBio RS II) single-molecule real-time (SMRT) high-resolution sequence technology and assembly using the Hierarchical Genome Assembly Process (HGAP). This is the first Plasmodium genome sequence reported to use only PacBio technology. This approach has proven to be superior to short-read only approaches for this species. Copyright © 2016 Chien et al.

Read More »

August 1, 2016

Complete telomere-to-telomere de novo assembly of the Plasmodium falciparum genome through long-read (>11?kb), single molecule, real-time sequencing.

The application of next-generation sequencing to estimate genetic diversity of Plasmodium falciparum, the most lethal malaria parasite, has proved challenging due to the skewed AT-richness [~80.6% (A?+?T)] of its genome and the lack of technology to assemble highly polymorphic subtelomeric regions that contain clonally variant, multigene virulence families (Ex: var and rifin). To address this, we performed amplification-free, single molecule, real-time sequencing of P. falciparum genomic DNA and generated reads of average length 12?kb, with 50% of the reads between 15.5 and 50?kb in length. Next, using the Hierarchical Genome Assembly Process, we assembled the P. falciparum genome de novo…

Read More »

1 2 3

Subscribe for blog updates:

Archives