fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Effects of genome structure variation, homeologous genes and repetitive DNA on polyploid crop research in the age of genomics.

Compared to diploid species, allopolyploid crop species possess more complex genomes, higher productivity, and greater adaptability to changing environments. Next generation sequencing techniques have produced high-density genetic maps, whole genome sequences, transcriptomes and epigenomes for important polyploid crops. However, several problems interfere with the full application of next generation sequencing techniques to these crops. Firstly, different types of genomic variation affect sequence assembly and QTL mapping. Secondly, duplicated or homoeologous genes can diverge in function and then lead to emergence of many minor QTL, which increases difficulties in fine mapping, cloning and marker assisted selection. Thirdly, repetitive DNA sequences arising…

Read More »

Sunday, July 7, 2019

HapCol: accurate and memory-efficient haplotype assembly from long reads.

Haplotype assembly is the computational problem of reconstructing haplotypes in diploid organisms and is of fundamental importance for characterizing the effects of single-nucleotide polymorphisms on the expression of phenotypic traits. Haplotype assembly highly benefits from the advent of ‘future-generation’ sequencing technologies and their capability to produce long reads at increasing coverage. Existing methods are not able to deal with such data in a fully satisfactory way, either because accuracy or performances degrade as read length and sequencing coverage increase or because they are based on restrictive assumptions.By exploiting a feature of future-generation technologies-the uniform distribution of sequencing errors-we designed an…

Read More »

Sunday, July 7, 2019

Genomic resources and their influence on the detection of the signal of positive selection in genome scans.

Genome scans represent powerful approaches to investigate the action of natural selection on the genetic variation of natural populations and to better understand local adaptation. This is very useful, for example, in the field of conservation biology and evolutionary biology. Thanks to Next Generation Sequencing, genomic resources are growing exponentially, improving genome scan analyses in non-model species. Thousands of SNPs called using Reduced Representation Sequencing are increasingly used in genome scans. Besides, genome sequences are also becoming increasingly available, allowing better processing of short-read data, offering physical localization of variants, and improving haplotype reconstruction and data imputation. Ultimately, genome sequences…

Read More »

Sunday, July 7, 2019

The Vigna Genome Server, ‘VigGS’: A genomic knowledge base of the genus Vigna based on high-quality, annotated genome sequence of the azuki bean, Vigna angularis (Willd.) Ohwi & Ohashi.

The genus Vigna includes legume crops such as cowpea, mungbean and azuki bean, as well as >100 wild species. A number of the wild species are highly tolerant to severe environmental conditions including high-salinity, acid or alkaline soil; drought; flooding; and pests and diseases. These features of the genus Vigna make it a good target for investigation of genetic diversity in adaptation to stressful environments; however, a lack of genomic information has hindered such research in this genus. Here, we present a genome database of the genus Vigna, Vigna Genome Server (‘VigGS’, http://viggs.dna.affrc.go.jp), based on the recently sequenced azuki bean…

Read More »

Sunday, July 7, 2019

Coevolution between Nuclear-encoded DNA replication, recombination, and repair genes and plastid genome complexity.

Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear-plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome…

Read More »

Sunday, July 7, 2019

Indica rice genome assembly, annotation and mining of blast disease resistance genes.

Rice is a major staple food crop in the world. Over 80 % of rice cultivation area is under indica rice. Currently, genomic resources are lacking for indica as compared to japonica rice. In this study, we generated deep-sequencing data (Illumina and Pacific Biosciences sequencing) for one of the indica rice cultivars, HR-12 from India.We assembled over 86 % (389 Mb) of rice genome and annotated 56,284 protein-coding genes from HR-12 genome using Illumina and PacBio sequencing. Comprehensive comparative analyses between indica and japonica subspecies genomes revealed a large number of indica specific variants including SSRs, SNPs and InDels. To mine disease resistance…

Read More »

Sunday, July 7, 2019

BAC-pool sequencing and assembly of 19 Mb of the complex sugarcane genome.

Sequencing plant genomes are often challenging because of their complex architecture and high content of repetitive sequences. Sugarcane has one of the most complex genomes. It is highly polyploid, preserves intact homeologous chromosomes from its parental species and contains >55% repetitive sequences. Although bacterial artificial chromosome (BAC) libraries have emerged as an alternative for accessing the sugarcane genome, sequencing individual clones is laborious and expensive. Here, we present a strategy for sequencing and assembly reads produced from the DNA of pooled BAC clones. A set of 178 BAC clones, randomly sampled from the SP80-3280 sugarcane BAC library, was pooled and…

Read More »

Sunday, July 7, 2019

Third-generation sequencing and the future of genomics

Third-generation long-range DNA sequencing and mapping technologies are creating a renaissance in high-quality genome sequencing. Unlike second-generation sequencing, which produces short reads a few hundred base-pairs long, third-generation single-molecule technologies generate over 10,000 bp reads or map over 100,000 bp molecules. We analyze how increased read lengths can be used to address long-standing problems in de novo genome assembly, structural variation analysis and haplotype phasing.

Read More »

Sunday, July 7, 2019

Exploring structural variants in environmentally sensitive gene families.

Environmentally sensitive plant gene families like NBS-LRRs, receptor kinases, defensins and others, are known to be highly variable. However, most existing strategies for discovering and describing structural variation in complex gene families provide incomplete and imperfect results. The move to de novo genome assemblies for multiple accessions or individuals within a species is enabling more comprehensive and accurate insights about gene family variation. Earlier array-based genome hybridization and sequence-based read mapping methods were limited by their reliance on a reference genome and by misplacement of paralogous sequences. Variant discovery based on de novo genome assemblies overcome the problems arising from…

Read More »

Sunday, July 7, 2019

Single-molecule sequencing assists genome assembly improvement and structural variation inference.

Dear editor, The single-molecule real-time (SMRT) sequencing platform presented by Pacific Biosciences (PacBio) is regarded as a third-generation sequencing technology (Eid et al., 2009, Roberts et al., 2013). PacBio delivers long reads from several to tens of kilobases (kbs), which are ideal for filling unsequenced gaps due to unusual sequence contexts, such as high-GC content or repeat-rich regions (Bashir et al., 2012, Berlin et al., 2015, Chaisson et al., 2015). PacBio long reads are also favorable for detecting large DNA fragments harboring structural variations (SVs), such as inversions, translocations, duplications, and large insertions/deletions (indels) (Ritz et al., 2010, English et…

Read More »

Sunday, July 7, 2019

Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza.

Salvia miltiorrhiza Bunge (Danshen) is a medicinal plant of the Lamiaceae family, and its dried roots have long been used in traditional Chinese medicine with hydrophilic phenolic acids and tanshinones as pharmaceutically active components (Zhang et al., 2014; Xu et al., 2016). The first step of tanshinone biosynthesis is bicyclization of the general diterpene precursor (E,E,E)-geranylgeranyl diphosphate (GGPP) to copalyl diphosphate (CPP) by CPP synthases (CPSs), which is followed by a cyclization or rearrangement reaction catalyzed by kaurene synthase-like enzymes (KSL).

Read More »

Sunday, July 7, 2019

An improved genome assembly of Azadirachta indica A. Juss.

Neem (Azadirachta indica A. Juss.), an evergreen tree of the Meliaceae family, is known for its medicinal, cosmetic, pesticidal and insecticidal properties. We had previously sequenced and published the draft genome of the plant, using mainly short read sequencing data. In this report, we present an improved genome assembly generated using additional short reads from Illumina and long reads from Pacific Biosciences SMRT sequencer. We assembled short reads and error corrected long reads using Platanus, an assembler designed to perform well for heterozygous genomes. The updated genome assembly (v2.0) yielded 3- and 3.5-fold increase in N50 and N75, respectively; 2.6-fold…

Read More »

Sunday, July 7, 2019

Complete chloroplast genome sequences of Eucommia ulmoides: genome structure and evolution.

Eucommia ulmoides is an important traditional medicinal plant that is used for the production of locative Eucommia rubber. In this study, the complete chloroplast (cp) genome sequence of E. ulmoides was obtained by total DNA sequencing; this is the first cp genome sequence of the order Garryales. The cp genome of E. ulmoides was 163,341 bp long and included a pair of inverted repeat (IR) regions (31,300 bp), one large single copy (LSC) region (86,592 bp), and one small single copy (SSC) region (14,149 bp). The genome structure and GC content were similar to those of typical angiosperm cp genomes and contained 115 unique…

Read More »

Sunday, July 7, 2019

The kiwifruit genome

The whole-genome sequence of Actinidia chinensis var. chinensis ‘Hongyang’ was published in 2013 and was represented as the first publicly available Ericales genome sequence. Publication in 2015 of an improved linkage map for A. chinensis and interspecific comparison analyses coupled with the availability of a second whole-genome sequence of a genotype closely related to ‘Hongyang’ have enabled the kiwifruit research community to improve the existing whole-genome sequence. This chapter describes the original genome sequence and steps towards its improvement.

Read More »

1 30 31 32 33 34 36

Subscribe for blog updates:

Archives

Search

Press Release

PacBio Grants Equity Incentive Award to New Employee

Friday, January 14, 2022

Stay
Current

Visit our blog »