Menu
July 7, 2019  |  

The complete genome sequence of Bacillus halotolerans ZB201702 isolated from a drought- and salt-stressed rhizosphere soil.

Bacillus halotolerans is a rhizobacterium with the potential to promote plant growth and tolerance to drought and salinity stress. Here, we present the complete genome sequence of B. halotolerans ZB201702, which consists of 4,150,000 bp in a linear chromosome, including 3074 protein-coding sequences, 30 rRNAs, and 85 tRNAs. Genome analysis revealed many putative gene clusters involved in defense mechanisms. Activity analysis of the strain under salt and simulated drought stress suggests tolerance to abiotic stresses. The complete genome information of B. halotolerans ZB201702 could provide valuable insights into rhizobacteria-mediated plant salt and drought tolerance and rhizobacteria-based solutions for abiotic stress agriculture. Copyright © 2018 Elsevier Ltd. All rights reserved.


July 7, 2019  |  

The regenerative flatworm Macrostomum lignano, a model organism with high experimental potential.

Understanding the process of regeneration has been one of the longstanding scientific aims, from a fundamental biological perspective, as well as within the applied context of regenerative medicine. Because regeneration competence varies greatly between organisms, it is essential to investigate different experimental animals. The free-living marine flatworm Macrostomum lignano is a rising model organism for this type of research, and its power stems from a unique set of biological properties combined with amenability to experimental manipulation. The biological properties of interest include production of single-cell fertilized eggs, a transparent body, small size, short generation time, ease of culture, the presence of a pluripotent stem cell population, and a large regeneration competence. These features sparked the development of molecular tools and resources for this animal, including high-quality genome and transcriptome assemblies, gene knockdown, in situ hybridization, and transgenesis. Importantly, M. lignano is currently the only flatworm species for which transgenesis methods are established. This review summarizes biological features of M. lignano and recent technological advances towards experimentation with this animal. In addition, we discuss the experimental potential of this model organism for different research questions related to regeneration and stem cell biology.


July 7, 2019  |  

Draft genome sequence of Tuber borchii Vittad., a whitish edible truffle.

The ascomycete Tuber borchii (Pezizomycetes) is a whitish edible truffle that establishes ectomycorrhizal symbiosis with trees and shrubs. This fungus is ubiquitous in Europe and is also cultivated outside Europe. Here, we present the draft genome sequence of T. borchii strain Tbo3840 (97.18 Mb in 969 scaffolds, with 12,346 predicted protein-coding genes).


July 7, 2019  |  

Genome size estimation of Chinese cultured artemisia annua L.

Almost all of antimalarial artemisinin is extracted from the traditional Chinese medicinal plant Artemisia annua L. However, under the condition of insufficient genomic in- formation and unresolved genetic backgrounds, regulatory mechanism of artemisinin biosynthetic pathway has not yet been clear. The genome size of genuine A. annua plants is an especially important and fundamental parameter, which helpful for further insight into genomic studies of ar- temisinin biosynthesis and improvement. In current study, all those genome sizes of A. annua samples collected with Barcoding identification were evaluated to be 1.38-1.49 Gb by Flow Cytometry (FCM) with Nipponbare as the bench- mark calibration standard and soybean and maize as two internal standards individually and simultaneously. The ge- nome estimation of seven A. annua strains came from five China provinces (Shandong, Hunan, Chongqing, Sichuan, and Hainan) with a low coefficient of variation (CV, = 2.96%) wasrelative accurate, 12.87% (220 Mb) less than previous reports about a foreign A. annuaspecies with a single con- trol. It facilitated the schedule of A. annua whole genome sequencing project, optimization of assembly methods and insight into its subsequent genetics and evolution.


July 7, 2019  |  

PGD: Pineapple Genomics Database.

Pineapple occupies an important phylogenetic position as its reference genome is a model for studying the evolution the Bromeliaceae family and the crassulacean acid metabolism (CAM) photosynthesis. Here, we developed a pineapple genomics database (PGD, http://pineapple.angiosperms.org/pineapple/html/index.html) as a central online platform for storing and integrating genomic, transcriptomic, function annotation and genetic marker data for pineapple (Ananas comosus (L.) Merr.). The PGD currently hosts significant search tools and available datasets for researchers to study comparative genomics, gene expression, gene co-expression molecular marker, and gene annotation of A. comosus (L). PGD also performed a series of additional pages for a genomic browser that visualizes genomic data interactively, bulk data download, a detailed user manual, and data integration information. PGD was developed with the capacity to integrate future data resources, and will be used as a long-term and open access database to facilitate the study of the biology, distribution, and the evolution of pineapple and the relative plant species. An email-based helpdesk is also available to offer support with the website and requests of specific datasets from the research community.


July 7, 2019  |  

Genetic variation of Pyrenophora teres f. teres isolates in Western Australia and emergence of a Cyp51A fungicide resistance mutation

Genome-wide, unlinked, simple sequence repeat markers were used to examine genetic variation and relationships within Pyrenophora teres f. teres, a common pathogen of barley, in Western Australia. Despite the region’s geographic isolation, the isolates showed relatively high allelic variation compared to similar studies, averaging 7.11 alleles per locus. Principal component, Bayesian clustering and distance differentiation parameters provided evidence for both regional genotypic subdivision together with juxtaposing of isolates possessing different genetic backgrounds. Genotyping of fungicide resistant Cyp51A isolates indicated a single mutation event occurred followed by recombination and long-distance regional dispersal over hundreds of kilometres. Selection of recently emergent favourable alleles such as the Cyp51A mutation and a cultivar virulence may provide an explanation, at least in part, for juxtaposed genotypes. Factors affecting genotypic composition and the movement of new genotypes are discussed in the context of grower practices and pathogen epidemiology, together with the implications for resistance breeding.


July 7, 2019  |  

Draft genome sequence of Streptomyces sp. P3 isolated from potato scab diseased tubers

Streptomyces sp. P3 was isolated from potato scab diseased tubers in Pyeongchang, Gangwon-do, Republic of Korea in 2017. Here, we report the draft genome sequences of P3 with 9,851,971 bp size (71.2% GC content) of the chromosome. The genome comprises 8,548 CDS, 18 rRNA and 66 tRNA genes. Although strain P3 did not show pathogenicity both potato tuber assay and radish seedling assay, it possesses tomatinase (tomA) gene among conserved pathogenicity-related genes in well characterized pathogenic Streptomyces. Thus, the genome sequences determined in this study will be useful to understand for pathogenic evolution in Streptomyces species, which already adapted to potato scab pathogens.


July 7, 2019  |  

Recent advances on detection and characterization of fruit tree viruses using high-throughput sequencing technologies.

Perennial crops, such as fruit trees, are infected by many viruses, which are transmitted through vegetative propagation and grafting of infected plant material. Some of these pathogens cause severe crop losses and often reduce the productive life of the orchards. Detection and characterization of these agents in fruit trees is challenging, however, during the last years, the wide application of high-throughput sequencing (HTS) technologies has significantly facilitated this task. In this review, we present recent advances in the discovery, detection, and characterization of fruit tree viruses and virus-like agents accomplished by HTS approaches. A high number of new viruses have been described in the last 5 years, some of them exhibiting novel genomic features that have led to the proposal of the creation of new genera, and the revision of the current virus taxonomy status. Interestingly, several of the newly identified viruses belong to virus genera previously unknown to infect fruit tree species (e.g., Fabavirus, Luteovirus) a fact that challenges our perspective of plant viruses in general. Finally, applied methodologies, including the use of different molecules as templates, as well as advantages and disadvantages and future directions of HTS in fruit tree virology are discussed.


July 7, 2019  |  

Complete genome sequence of Rhizobium sp. strain 11515TR, isolated from tomato rhizosphere in the Philippines.

Rhizobium sp. strain 11515TR was isolated from the rhizosphere of to- mato in Laguna, Philippines. The 7.07-Mb complete genome comprises three repli- cons, one chromosome, and two plasmids, with a G?C content of 59.4% and 6,720 protein-coding genes. The genome encodes gene clusters supporting rhizosphere processes, plant symbiosis, and secondary bioactive metabolites.


July 7, 2019  |  

Genome-wide analysis of the invertase gene family from maize.

The recent release of the maize genome (AGPv4) contains annotation errors of invertase genes and therefore the enzymes are bestly curated manually at the protein level in a comprehensible fashion The synthesis, transport and degradation of sucrose are determining factors for biomass allocation and yield of crop plants. Invertase (INV) is a key enzyme of carbon metabolism in both source and sink tissues. Current releases of the maize genome correctly annotates only two vacuolar invertases (ivr1 and ivr2) and four cell wall invertases (incw1, incw2 (mn1), incw3, and incw4). Our comprehensive survey identified 21 INV isogenes for which we propose a standard nomenclature grouped phylogenetically by amino acid similarity: three vacuolar (INVVR), eight cell wall (INVCW), and ten alkaline/neutral (INVAN) isogenes which form separate dendogram branches due to distinct molecular features. The acidic enzymes were curated for the presence of the DPN tripeptide which is coded by one of the smallest exons reported in plants. Particular attention was placed on the molecular role of INV in vascular tissues such as the nodes, internodes, leaf sheath, husk leaves and roots. We report the expression profile of most members of the maize INV family in nine tissues in two developmental stages, R1 and R3. INVCW7, INVVR2, INVAN8, INVAN9, INVAN10, and INVAN3 displayed the highest absolute expressions in most tissues. INVVR3, INVCW5, INVCW8, and INVAN1 showed low mRNA levels. Expressions of most INVs were repressed from stage R1 to R3, except for INVCW7 which increased significantly in all tissues after flowering. The mRNA levels of INVCW7 in the vegetative stem correlated with a higher transport rate of assimilates from leaves to the cob which led to starch accumulation and growth of the female reproductive organs.


July 7, 2019  |  

Genomics, GPCRs and new targets for the control of insect pests and vectors.

The pressing need for new pest control products with novel modes of action has spawned interest in small molecules and peptides targeting arthropod GPCRs. Genome sequence data and tools for reverse genetics have enabled the prediction and characterization of GPCRs from many invertebrates. We review recent work to identify, characterize and de-orphanize arthropod GPCRs, with a focus on studies that reveal exciting new functional roles for these receptors, including the regulation of metabolic resistance. We explore the potential for insecticides targeting Class A biogenic amine-binding and peptide-binding receptors, and consider the innovation required to generate pest-selective leads for development, within the context of new PCR-targeting products to control arthropod vectors of disease.Copyright © 2018. Published by Elsevier Inc.


July 7, 2019  |  

Omics in weed science: A perspective from genomics, transcriptomics, and metabolomics approaches

Modern high-throughput molecular and analytical tools offer exciting opportunities to gain a mechanistic understanding of unique traits of weeds. During the past decade, tremendous progress has been made within the weed science discipline using genomic techniques to gain deeper insights into weedy traits such as invasiveness, hybridization, and herbicide resistance. Though the adoption of newer “omics” techniques such as proteomics, metabolomics, and physionomics has been slow, applications of these omics platforms to study plants, especially agriculturally important crops and weeds, have been increasing over the years. In weed science, these platforms are now used more frequently to understand mechanisms of herbicide resistance, weed resistance evolution, and crop–weed interactions. Use of these techniques could help weed scientists to further reduce the knowledge gaps in understanding weedy traits. Although these techniques can provide robust insights about the molecular functioning of plants, employing a single omics platform can rarely elucidate the gene-level regulation and the associated real-time expression of weedy traits due to the complex and overlapping nature of biological interactions. Therefore, it is desirable to integrate the different omics technologies to give a better understanding of molecular functioning of biological systems. This multidimensional integrated approach can therefore offer new avenues for better understanding of questions of interest to weed scientists. This review offers a retrospective and prospective examination of omics platforms employed to investigate weed physiology and novel approaches and new technologies that can provide holistic and knowledge-based weed management strategies for future.


July 7, 2019  |  

Complete genome sequence of the Arcobacter bivalviorum type strain LMG 26154.

Arcobacters are routinely recovered from marine environments, and multiple Arcobacter species have been isolated from shellfish. Arcobacter bivalviorum was recovered from mussels collected in the Ebro Delta in northeastern Spain. This report describes the complete whole-genome sequence of the A. bivalviorum type strain LMG 26154 (= F4T = CECT 7835T).


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.