fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Heterogeneous resistance to quizartinib in acute myeloid leukemia revealed by single-cell analysis.

Genomic studies have revealed significant branching heterogeneity in cancer. Studies of resistance to tyrosine kinase inhibitor therapy have not fully reflected this heterogeneity because resistance in individual patients has been ascribed to largely mutually exclusive on-target or off-target mechanisms in which tumors either retain dependency on the target oncogene or subvert it through a parallel pathway. Using targeted sequencing from single cells and colonies from patient samples, we demonstrate tremendous clonal diversity in the majority of acute myeloid leukemia (AML) patients with activating FLT3 internal tandem duplication mutations at the time of acquired resistance to the FLT3 inhibitor quizartinib. These…

Read More »

Sunday, July 7, 2019

Resolving multicopy duplications de novo using polyploid phasing

While the rise of single-molecule sequencing systems has enabled an unprecedented rise in the ability to assemble complex regions of the genome, long segmental duplications in the genome still remain a challenging frontier in assembly. Segmental duplications are at the same time both gene rich and prone to large structural rearrangements, making the resolution of their sequences important in medical and evolutionary studies. Duplicated sequences that are collapsed in mammalian de novo assemblies are rarely identical; after a sequence is duplicated, it begins to acquire paralog-specific variants. In this paper, we study the problem of resolving the variations in multicopy,…

Read More »

Sunday, July 7, 2019

Morphological and genetic analyses of the invasive forest pathogen Phytophthora austrocedri reveal two clonal lineages colonised Britain and Argentina from a common ancestral population.

Phytophthora austrocedri is causing widespread mortality of Austrocedrus chilensis in Argentina and Juniperus communis in Britain. The pathogen has also been isolated from J. horizontalis in Germany. Isolates from Britain, Argentina and Germany are homothallic with no clear differences in the dimensions of sporangia, oogonia or oospores. Argentinian and German isolates grew faster than British isolates across a range of media and had a higher temperature tolerance although most isolates regardless of origin grew best at 15°C and all isolates were killed at 25°C. Argentinian and British isolates caused lesions on both hosts when inoculated onto A. chilensis and J.…

Read More »

Sunday, July 7, 2019

Archetype JC polyomavirus prevails in a rare case of JC polyomavirus nephropathy and in stable renal transplant recipients with JC polyomavirus viruria.

JC polyomavirus (JCPyV) is reactivated in approximately 20% of renal transplant recipients and it may rarely cause JCPyV-associated nephropathy (JCPyVAN). Whereas progressive multifocal leukoencephalopathy of the brain is caused by rearranged neurotropic JCPyV, little is known about viral sequence variation in JCPyVAN due to the rarity of this condition.Using single-molecule real-time sequencing, characterization of full-length JCPyV genomes from urine and plasma of one JCPyVAN patient and twenty stable renal transplant recipients with JCPyV viruria was attempted. Sequence analysis of JCPyV strains was performed with the emphasis on the NCCR region, the major capsid protein gene VP1 and the large T…

Read More »

Sunday, July 7, 2019

Dense and accurate whole-chromosome haplotyping of individual genomes.

The diploid nature of the human genome is neglected in many analyses done today, where a genome is perceived as a set of unphased variants with respect to a reference genome. This lack of haplotype-level analyses can be explained by a lack of methods that can produce dense and accurate chromosome-length haplotypes at reasonable costs. Here we introduce an integrative phasing strategy that combines global, but sparse haplotypes obtained from strand-specific single-cell sequencing (Strand-seq) with dense, yet local, haplotype information available through long-read or linked-read sequencing. We provide comprehensive guidance on the required sequencing depths and reliably assign more than…

Read More »

Sunday, July 7, 2019

Estimating fitness of viral quasispecies from next-generation sequencing data.

The quasispecies model is ubiquitous in the study of viruses. While having lead to a number of insights that have stood the test of time, the quasispecies model has mostly been discussed in a theoretical fashion with little support of data. With next-generation sequencing (NGS), this situation is changing and a wealth of data can now be produced in a time- and cost-efficient manner. NGS can, after removal of technical errors, yield an exceedingly detailed picture of the viral population structure. The widespread availability of cross-sectional data can be used to study fitness landscapes of viral populations in the quasispecies…

Read More »

Sunday, July 7, 2019

HapCol: accurate and memory-efficient haplotype assembly from long reads.

Haplotype assembly is the computational problem of reconstructing haplotypes in diploid organisms and is of fundamental importance for characterizing the effects of single-nucleotide polymorphisms on the expression of phenotypic traits. Haplotype assembly highly benefits from the advent of ‘future-generation’ sequencing technologies and their capability to produce long reads at increasing coverage. Existing methods are not able to deal with such data in a fully satisfactory way, either because accuracy or performances degrade as read length and sequencing coverage increase or because they are based on restrictive assumptions.By exploiting a feature of future-generation technologies-the uniform distribution of sequencing errors-we designed an…

Read More »

Sunday, July 7, 2019

OxyR-dependent formation of DNA methylation patterns in OpvABOFF and OpvABON cell lineages of Salmonella enterica.

Phase variation of the Salmonella enterica opvAB operon generates a bacterial lineage with standard lipopolysaccharide structure (OpvAB(OFF)) and a lineage with shorter O-antigen chains (OpvAB(ON)). Regulation of OpvAB lineage formation is transcriptional, and is controlled by the LysR-type factor OxyR and by DNA adenine methylation. The opvAB regulatory region contains four sites for OxyR binding (OBSA-D), and four methylatable GATC motifs (GATC1-4). OpvAB(OFF) and OpvAB(ON) cell lineages display opposite DNA methylation patterns in the opvAB regulatory region: (i) in the OpvAB(OFF) state, GATC1 and GATC3 are non-methylated, whereas GATC2 and GATC4 are methylated; (ii) in the OpvAB(ON) state, GATC2 and…

Read More »

Sunday, July 7, 2019

Read-based phasing of related individuals.

Read-based phasing deduces the haplotypes of an individual from sequencing reads that cover multiple variants, while genetic phasing takes only genotypes as input and applies the rules of Mendelian inheritance to infer haplotypes within a pedigree of individuals. Combining both into an approach that uses these two independent sources of information-reads and pedigree-has the potential to deliver results better than each individually.We provide a theoretical framework combining read-based phasing with genetic haplotyping, and describe a fixed-parameter algorithm and its implementation for finding an optimal solution. We show that leveraging reads of related individuals jointly in this way yields more phased…

Read More »

Sunday, July 7, 2019

Third-generation sequencing and the future of genomics

Third-generation long-range DNA sequencing and mapping technologies are creating a renaissance in high-quality genome sequencing. Unlike second-generation sequencing, which produces short reads a few hundred base-pairs long, third-generation single-molecule technologies generate over 10,000 bp reads or map over 100,000 bp molecules. We analyze how increased read lengths can be used to address long-standing problems in de novo genome assembly, structural variation analysis and haplotype phasing.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Bradyrhizobium sp. strain CCGE-LA001, isolated from field nodules of the enigmatic wild bean Phaseolus microcarpus.

We present the complete genome sequence of Bradyrhizobium sp. strain CCGE-LA001, a nitrogen-fixing bacterium isolated from nodules of Phaseolus microcarpus. Strain CCGE-LA001 represents the first sequenced bradyrhizobial strain obtained from a wild Phaseolus sp. Its genome revealed a large and novel symbiotic island. Copyright © 2016 Servín-Garcidueñas et al.

Read More »

Sunday, July 7, 2019

Selecting reads for haplotype assembly

Haplotype assembly or read-based phasing is the problem of reconstructing both haplotypes of a diploid genome from next-generation sequencing data. This problem is formalized as the Minimum Error Correction (MEC) problem and can be solved using algorithms such as WhatsHap. The runtime of WhatsHap is exponential in the maximum coverage, which is hence controlled in a pre-processing step that selects reads to be used for phasing. Here, we report on a heuristic algorithm designed to choose beneficial reads for phasing, in particular to increase the connectivity of the phased blocks and the number of correctly phased variants compared to the…

Read More »

Sunday, July 7, 2019

Bacterial genetics: SMRT-seq reveals an epigenetic switch.

Streptococcus pneumoniae uses genetic diversification as a strategy to achieve phenotypic plasticity. For example, DNA inversion of the hsdS genes of type I restriction-modification (R-M) systems determines whether S. pneumoniae forms opaque or transparent colonies, which have different colonization and virulence characteristics. Zhang and colleagues now use single-molecule, real-time sequencing (SMRT-seq) to show the allelic variation of hsdS that results from site-specific recombination forms part of an epigenetic switch.

Read More »

Sunday, July 7, 2019

WhatsHap: fast and accurate read-based phasing

Read-based phasing allows to reconstruct the haplotype structure of a sample purely from sequencing reads. While phasing is a required step for answering questions about population genetics, compound heterozygosity, and to aid in clinical decision making, there has been a lack of an accurate, usable and standards-based software. WhatsHap is a production-ready tool for highly accurate read-based phasing. It was designed from the beginning to leverage third-generation sequencing technologies, whose long reads can span many variants and are therefore ideal for phasing. WhatsHap works also well with second-generation data, is easy to use and will phase not only SNVs, but…

Read More »

1 8 9 10 11

Subscribe for blog updates:

Archives