Menu
July 7, 2019  |  

Complete genome sequence of a type strain of Mycobacterium abscessus subsp. bolletii, a member of the Mycobacterium abscessus complex.

Mycobacterium abscessus subsp. bolletii is a rapidly growing mycobacterial organism for which the taxonomy is unclear. Here, we report the complete genome sequence of a Mycobacterium abscessus subsp. bolletii type strain. This sequence will provide essential information for future taxonomic and comparative genome studies of these mycobacteria.


July 7, 2019  |  

Genome sequence of the necrotrophic plant pathogen Alternaria brassicicola Abra43.

Alternaria brassicicola causes dark spot (or black spot) disease, which is one of the most common and destructive fungal diseases of Brassicaceae spp. worldwide. Here, we report the draft genome sequence of strain Abra43. The assembly comprises 29 scaffolds, with an N50 value of 2.1 Mb. The assembled genome was 31,036,461 bp in length, with a G+C content of 50.85%.


July 7, 2019  |  

Development of molecular markers linked to powdery mildew resistance GenePm4bby combining SNP discovery from transcriptome sequencing data with bulked segregant analysis (BSR-Seq) in wheat.

Powdery mildew resistance genePm4b, originating fromTriticum persicum, is effective against the prevalentBlumeria graminisf. sp.tritici(Bgt) isolates from certain regions of wheat production in China. The lack of tightly linked molecular markers with the target gene prevents the precise identification ofPm4bduring the application of molecular marker-assisted selection (MAS). The strategy that combines the RNA-Seq technique and the bulked segregant analysis (BSR-Seq) was applied in an F2:3mapping population (237 families) derived from a pair of isogenic lines VPM1/7*Bainong 3217 F4(carryingPm4b) and Bainong 3217 to develop more closely linked molecular markers. RNA-Seq analysis of the two phenotypically contrasting RNA bulks prepared from the representative F2:3families generated 20,745,939 and 25,867,480 high-quality read pairs, and 82.8 and 80.2% of them were uniquely mapped to the wheat whole genome draft assembly for the resistant and susceptible RNA bulks, respectively. Variant calling identified 283,866 raw single nucleotide polymorphisms (SNPs) and InDels between the two bulks. The SNPs that were closely associated with the powdery mildew resistance were concentrated on chromosome 2AL. Among the 84 variants that were potentially associated with the disease resistance trait, 46 variants were enriched in an about 25 Mb region at the distal end of chromosome arm 2AL. FourPm4b-linked SNP markers were developed from these variants. Based on the sequences of Chinese Spring where these polymorphic SNPs were located, 98 SSR primer pairs were designed to develop distal markers flanking thePm4bgene. Three SSR markers,Xics13,Xics43, andXics76, were incorporated in the new genetic linkage map, which locatedPm4bin a 3.0 cM genetic interval spanning a 6.7 Mb physical genomic region. This region had a collinear relationship withBrachypodium distachyonchromosome 5, rice chromosome 4, and sorghum chromosome 6. Seven genes associated with disease resistance were predicted in this collinear genomic region, which included C2 domain protein, peroxidase activity protein, protein kinases of PKc_like super family, Mlo family protein, and catalytic domain of the serine/threonine kinases (STKc_IRAK like super family). The markers developed in the present study facilitate identification ofPm4bduring its MAS practice.


July 7, 2019  |  

Oryza glaberrima Steud.

Oryza glaberrima is the African cultivated rice species, domesticated from its wild ancestor by farmers living in Inland Delta of Niger River. Several studies indicated that it has extremely narrow genetic diversity compared to both its wild progenitor, Oryza barthii and the Asian rice, Oryza sativa which can mainly be attributed to a severe domestication bottleneck. Despite its scarcity in farmer’s field due to its low yield potential, high shattering and lodging susceptibility, O. glaberrima is of great value not only to Africa but also globally. Perhaps its greatest contribution to regional and global food security is as a source of genes, as it possesses resistance/tolerance to various biotic and abiotic stresses. It also has unique starch-related traits which give it good cooking and eating properties. Advances in DNA sequencing have provided useful genomic resources for African rice, key among them being whole genome sequences. Genomic tools are enabling greater understanding of the useful functional diversity found in this species. These advances have potential of addressing some of the undesirable attributes found in this species which have led to its continued replacement by Asian rice. Development of new generation of rice varieties for African farmers will therefore require the adoption of advanced molecular breeding tools as these will allow efficient utilization of the wealth and resilience found in African rice in rice improvement.


July 7, 2019  |  

Gapless genome assembly of the potato and tomato early blight pathogen Alternaria solani.

The Alternaria genus consists of saprophytic fungi as well as plant-pathogenic species that have significant economic impact. To date, the genomes of multiple Alternaria species have been sequenced. These studies have yielded valuable data for molecular studies on Alternaria fungi. However, most of the current Alternaria genome assemblies are highly fragmented, thereby hampering the identification of genes that are involved in causing disease. Here, we report a gapless genome assembly of A. solani, the causal agent of early blight in tomato and potato. The genome assembly is a significant step toward a better understanding of pathogenicity of A. solani.


July 7, 2019  |  

Genome sequencing to develop Paenibacillus donghaensis strain JH8T (KCTC 13049T=LMG 23780T) as a microbial fertilizer and correlation to its plant growth-promoting phenotype

Paenibacillus donghaensis JH8T (KCTC 13049T=LMG 23780T) is a Gram-positive, mesophilic, endospore-forming bacterium isolated from East Sea sediment at depth of 500m in Korea. The strain exhibited plant cell wall hydrolytic and plant growth promoting abilities. The complete genome of P. donghaensis strain JH8T contains 7602 protein-coding sequences and an average GC content of 49.7% in its chromosome (8.54Mbp). Genes encoding proteins related to the degradation of plant cell wall, nitrogen-fixation, phosphate solubilization, and synthesis of siderophore were existed in the P. donghaensis strain JH8T genome, indicating that this strain can be used as an eco-friendly microbial agent for increasing agricultural productivity.


July 7, 2019  |  

Sustaining global agriculture through rapid detection and deployment of genetic resistance to deadly crop diseases.

Contents Summary 45 I. Introduction 45 II. Targeted chromosome-based cloning via long-range assembly (TACCA) 46 III. Resistance gene cloning through mutational mapping (MutMap) 47 IV. Cloning through mutant chromosome sequencing (MutChromSeq) 47 V. Rapid cloning through resistance gene enrichment and sequencing (RenSeq) 49 VI. Cloning resistance genes through transcriptome profiling (RNAseq) 49 VII. Resistance gene deployment strategies 49 VIII. Conclusions 50 Acknowledgements 50 References 50 SUMMARY: Genetically encoded resistance is a major component of crop disease management. Historically, gene loci conferring resistance to pathogens have been identified through classical genetic methods. In recent years, accelerated gene cloning strategies have become available through advances in sequencing, gene capture and strategies for reducing genome complexity. Here, I describe these approaches with key emphasis on the isolation of resistance genes to the cereal crop diseases that are an ongoing threat to global food security. Rapid gene isolation enables their efficient deployment through marker-assisted selection and transgenic technology. Together with innovations in genome editing and progress in pathogen virulence studies, this creates further opportunities to engineer long-lasting resistance. These approaches will speed progress towards a future of farming using fewer pesticides.© 2017 Commonwealth of Australia. New Phytologist © 2017 New Phytologist Trust.


July 7, 2019  |  

Complete genome sequence of the sesame pathogen Ralstonia solanacearum strain SEPPX 05.

Ralstonia solanacearum is a soil-borne phytopathogen associated with bacterial wilt disease of sesame. R. solanacearum is the predominant agent causing damping-off from tropical to temperate regions. Because bacterial wilt has decreased the sesame industry yield, we sequenced the SEPPX05 genome using PacBio and Illumina HiSeq 2500 systems and revealed that R. solanacearum strain SEPPX05 carries a bipartite genome consisting of a 3,930,849 bp chromosome and a 2,066,085 bp megaplasmid with 66.84% G+C content that harbors 5,427 coding sequences. Based on the whole genome, phylogenetic analysis showed that strain SEPPX05 is grouped with two phylotype I strains (EP1 and GMI1000). Pan-genomic analysis shows that R. solanacearum is a complex species with high biological diversity and was able to colonize various environments during evolution. Despite deletions, insertions, and inversions, most genes of strain SEPPX05 have relatively high levels of synteny compared with strain GMI1000. We identified 104 genes involved in virulence-related factors in the SEPPX05 genome and eight absent genes encoding T3Es of GMI1000. Comparing SEPPX05 with other species, we found highly conserved secretion systems central to modulating interactions of host bacteria. These data may provide important clues for understanding underlying pathogenic mechanisms of R. solanacearum and help in the control of sesame bacterial wilt.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.