Menu
July 19, 2019  |  

TCR sequencing of single cells reactive to DQ2.5-glia-a2 and DQ2.5-glia-?2 reveals clonal expansion and epitope-specific V-gene usage.

CD4+ T cells recognizing dietary gluten epitopes in the context of disease-associated human leukocyte antigen (HLA)-DQ2 or HLA-DQ8 molecules are the key players in celiac disease pathogenesis. Here, we conducted a large-scale single-cell paired T-cell receptor (TCR) sequencing study to characterize the TCR repertoire for two homologous immunodominant gluten epitopes, DQ2.5-glia-a2 and DQ2.5-glia-?2, in blood of celiac disease patients after oral gluten challenge. Despite sequence similarity of the epitopes, the TCR repertoires are unique but shared several overall features. We demonstrate that clonally expanded T cells dominate the T-cell responses to both epitopes. Moreover, we find V-gene bias of TRAV26, TRAV4, and TRBV7 in DQ2.5-glia-a2 reactive TCRs, while DQ2.5-glia-?2 TCRs displayed significant bias toward TRAV4 and TRBV4. The knowledge that antigen-specific TCR repertoire in chronic inflammatory diseases tends to be dominated by a few expanded clones that use the same TCR V-gene segments across patients is important information for HLA-associated diseases where the antigen is unknown.


July 19, 2019  |  

A comparison of tools for the simulation of genomic next-generation sequencing data.

Computer simulation of genomic data has become increasingly popular for assessing and validating biological models or for gaining an understanding of specific data sets. Several computational tools for the simulation of next-generation sequencing (NGS) data have been developed in recent years, which could be used to compare existing and new NGS analytical pipelines. Here we review 23 of these tools, highlighting their distinct functionality, requirements and potential applications. We also provide a decision tree for the informed selection of an appropriate NGS simulation tool for the specific question at hand.


July 7, 2019  |  

Drug resistance analysis by next generation sequencing in Leishmania.

The use of next generation sequencing has the power to expedite the identification of drug resistance determinants and biomarkers and was applied successfully to drug resistance studies in Leishmania. This allowed the identification of modulation in gene expression, gene dosage alterations, changes in chromosome copy numbers and single nucleotide polymorphisms that correlated with resistance in Leishmania strains derived from the laboratory and from the field. An impressive heterogeneity at the population level was also observed, individual clones within populations often differing in both genotypes and phenotypes, hence complicating the elucidation of resistance mechanisms. This review summarizes the most recent highlights that whole genome sequencing brought to our understanding of Leishmania drug resistance and likely new directions.


July 7, 2019  |  

Sequencing of plasmids pAMBL1 and pAMBL2 from Pseudomonas aeruginosa reveals a blaVIM-1 amplification causing high-level carbapenem resistance.

Carbapenemases are a major concern for the treatment of infectious diseases caused by Gram-negative bacteria. Although plasmids are responsible for the spread of resistance genes among these pathogens, there is limited information on the nature of the mobile genetic elements carrying carbapenemases in Pseudomonas aeruginosa.We combined data from two different next-generation sequencing platforms, Illumina HiSeq2000 and PacBio RSII, to obtain the complete nucleotide sequences of two blaVIM-1-carrying plasmids (pAMBL1 and pAMBL2) isolated from P. aeruginosa clinical isolates.Plasmid pAMBL1 has 26?440 bp and carries a RepA_C family replication protein. pAMBL1 is similar to plasmids pNOR-2000 and pKLC102 from P. aeruginosa and pAX22 from Achromobacter xylosoxidans, which also carry VIM-type carbapenemases. pAMBL2 is a 24?133 bp plasmid with a replication protein that belongs to the Rep_3 family. It shows a high degree of homology with a fragment of the blaVIM-1-bearing plasmid pPC9 from Pseudomonas putida. Plasmid pAMBL2 carries three copies of the blaVIM-1 cassette in an In70 class 1 integron conferring, unlike pAMBL1, high-level resistance to carbapenems.We present two new plasmids coding for VIM-1 carbapenemase from P. aeruginosa and report that the presence of three copies of blaVIM-1 in pAMBL2 produces high-level resistance to carbapenems.© The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Quality scores for 32,000 genomes.

More than 80% of the microbial genomes in GenBank are of ‘draft’ quality (12,553 draft vs. 2,679 finished, as of October, 2013). We have examined all the microbial DNA sequences available for complete, draft, and Sequence Read Archive genomes in GenBank as well as three other major public databases, and assigned quality scores for more than 30,000 prokaryotic genome sequences.Scores were assigned using four categories: the completeness of the assembly, the presence of full-length rRNA genes, tRNA composition and the presence of a set of 102 conserved genes in prokaryotes. Most (~88%) of the genomes had quality scores of 0.8 or better and can be safely used for standard comparative genomics analysis. We compared genomes across factors that may influence the score. We found that although sequencing depth coverage of over 100x did not ensure a better score, sequencing read length was a better indicator of sequencing quality. With few exceptions, most of the 30,000 genomes have nearly all the 102 essential genes.The score can be used to set thresholds for screening data when analyzing “all published genomes” and reference data is either not available or not applicable. The scores highlighted organisms for which commonly used tools do not perform well. This information can be used to improve tools and to serve a broad group of users as more diverse organisms are sequenced. Unexpectedly, the comparison of predicted tRNAs across 15,000 high quality genomes showed that anticodons beginning with an ‘A’ (codons ending with a ‘U’) are almost non-existent, with the exception of one arginine codon (CGU); this has been noted previously in the literature for a few genomes, but not with the depth found here.


July 7, 2019  |  

The challenges and importance of structural variation detection in livestock.

Recent studies in humans and other model organisms have demonstrated that structural variants (SVs) comprise a substantial proportion of variation among individuals of each species. Many of these variants have been linked to debilitating diseases in humans, thereby cementing the importance of refining methods for their detection. Despite progress in the field, reliable detection of SVs still remains a problem even for human subjects. Many of the underlying problems that make SVs difficult to detect in humans are amplified in livestock species, whose lower quality genome assemblies and incomplete gene annotation can often give rise to false positive SV discoveries. Regardless of the challenges, SV detection is just as important for livestock researchers as it is for human researchers, given that several productive traits and diseases have been linked to copy number variations (CNVs) in cattle, sheep, and pig. Already, there is evidence that many beneficial SVs have been artificially selected in livestock such as a duplication of the agouti signaling protein gene that causes white coat color in sheep. In this review, we will list current SV and CNV discoveries in livestock and discuss the problems that hinder routine discovery and tracking of these polymorphisms. We will also discuss the impacts of selective breeding on CNV and SV frequencies and mention how SV genotyping could be used in the future to improve genetic selection.


July 7, 2019  |  

Implementation and data analysis of Tn-seq, whole genome resequencing, and single-molecule real time sequencing for bacterial genetics.

Few discoveries have been more transformative to the biological sciences than the development of DNA sequencing technologies. The rapid advancement of sequencing and bioinformatics tools has revolutionized bacterial genetics, deepening our understanding of model and clinically relevant organisms. Although application of newer sequencing technologies to studies in bacterial genetics is increasing, the implementation of DNA sequencing technologies and development of the bioinformatics tools required for analyzing the large data sets generated remains a challenge for many. In this minireview, we have chosen to summarize three sequencing approaches that are particularly useful for bacterial genetics. We provide resources for scientists new to and interested in their application. Herein, we discuss the analysis of Tn-seq data to determine gene disruptions differentially represented in a mutant population, Illumina sequencing for identification of suppressor or other mutations, and we summarize single-molecule real time (SMRT) sequencing for de novo genome assembly and the use of the output data for detection of DNA base modifications. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Fallacy of the unique genome: sequence diversity within single Helicobacter pylori strains.

Many bacterial genomes are highly variable but nonetheless are typically published as a single assembled genome. Experiments tracking bacterial genome evolution have not looked at the variation present at a given point in time. Here, we analyzed the mouse-passaged Helicobacter pylori strain SS1 and its parent PMSS1 to assess intra- and intergenomic variability. Using high sequence coverage depth and experimental validation, we detected extensive genome plasticity within these H. pylori isolates, including movement of the transposable element IS607, large and small inversions, multiple single nucleotide polymorphisms, and variation in cagA copy number. The cagA gene was found as 1 to 4 tandem copies located off the cag island in both SS1 and PMSS1; this copy number variation correlated with protein expression. To gain insight into the changes that occurred during mouse adaptation, we also compared SS1 and PMSS1 and observed 46 differences that were distinct from the within-genome variation. The most substantial was an insertion in cagY, which encodes a protein required for a type IV secretion system function. We detected modifications in genes coding for two proteins known to affect mouse colonization, the HpaA neuraminyllactose-binding protein and the FutB a-1,3 lipopolysaccharide (LPS) fucosyltransferase, as well as genes predicted to modulate diverse properties. In sum, our work suggests that data from consensus genome assemblies from single colonies may be misleading by failing to represent the variability present. Furthermore, we show that high-depth genomic sequencing data of a population can be analyzed to gain insight into the normal variation within bacterial strains.IMPORTANCE Although it is well known that many bacterial genomes are highly variable, it is nonetheless traditional to refer to, analyze, and publish “the genome” of a bacterial strain. Variability is usually reduced (“only sequence from a single colony”), ignored (“just publish the consensus”), or placed in the “too-hard” basket (“analysis of raw read data is more robust”). Now that whole-genome sequences are regularly used to assess virulence and track outbreaks, a better understanding of the baseline genomic variation present within single strains is needed. Here, we describe the variability seen in typical working stocks and colonies of pathogen Helicobacter pylori model strains SS1 and PMSS1 as revealed by use of high-coverage mate pair next-generation sequencing (NGS) and confirmed by traditional laboratory techniques. This work demonstrates that reliance on a consensus assembly as “the genome” of a bacterial strain may be misleading. Copyright © 2017 Draper et al.


July 7, 2019  |  

BAC-pool sequencing and assembly of 19 Mb of the complex sugarcane genome.

Sequencing plant genomes are often challenging because of their complex architecture and high content of repetitive sequences. Sugarcane has one of the most complex genomes. It is highly polyploid, preserves intact homeologous chromosomes from its parental species and contains >55% repetitive sequences. Although bacterial artificial chromosome (BAC) libraries have emerged as an alternative for accessing the sugarcane genome, sequencing individual clones is laborious and expensive. Here, we present a strategy for sequencing and assembly reads produced from the DNA of pooled BAC clones. A set of 178 BAC clones, randomly sampled from the SP80-3280 sugarcane BAC library, was pooled and sequenced using the Illumina HiSeq2000 and PacBio platforms. A hybrid assembly strategy was used to generate 2,451 scaffolds comprising 19.2 MB of assembled genome sequence. Scaffolds of =20 Kb corresponded to 80% of the assembled sequences, and the full sequences of forty BACs were recovered in one or two contigs. Alignment of the BAC scaffolds with the chromosome sequences of sorghum showed a high degree of collinearity and gene order. The alignment of the BAC scaffolds to the 10 sorghum chromosomes suggests that the genome of the SP80-3280 sugarcane variety is ~19% contracted in relation to the sorghum genome. In conclusion, our data show that sequencing pools composed of high numbers of BAC clones may help to construct a reference scaffold map of the sugarcane genome.


July 7, 2019  |  

A roadmap for gene system development in Clostridium.

Clostridium species are both heroes and villains. Some cause serious human and animal diseases, those present in the gut microbiota generally contribute to health and wellbeing, while others represent useful industrial chassis for the production of chemicals and fuels. To understand, counter or exploit, there is a fundamental requirement for effective systems that may be used for directed or random genome modifications. We have formulated a simple roadmap whereby the necessary gene systems maybe developed and deployed. At its heart is the use of ‘pseudo-suicide’ vectors and the creation of a pyrE mutant (a uracil auxotroph), initially aided by ClosTron technology, but ultimately made using a special form of allelic exchange termed ACE (Allele-Coupled Exchange). All mutants, regardless of the mutagen employed, are made in this host. This is because through the use of ACE vectors, mutants can be rapidly complemented concomitant with correction of the pyrE allele and restoration of uracil prototrophy. This avoids the phenotypic effects frequently observed with high copy number plasmids and dispenses with the need to add antibiotic to ensure plasmid retention. Once available, the pyrE host may be used to stably insert all manner of application specific modules. Examples include, a sigma factor to allow deployment of a mariner transposon, hydrolases involved in biomass deconstruction and therapeutic genes in cancer delivery vehicles. To date, provided DNA transfer is obtained, we have not encountered any clostridial species where this technology cannot be applied. These include, Clostridium difficile, Clostridium acetobutylicum, Clostridium beijerinckii, Clostridium botulinum, Clostridium perfringens, Clostridium sporogenes, Clostridium pasteurianum, Clostridium ljungdahlii, Clostridium autoethanogenum and even Geobacillus thermoglucosidasius. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.


July 7, 2019  |  

Long single-molecule reads can resolve the complexity of the influenza virus composed of rare, closely related mutant variants

As a result of a high rate of mutations and recombination events, an RNA-virus exists as a heterogeneous “swarm” of mutant variants. The long read length offered by single-molecule sequencing technologies allows each mutant variant to be sequenced in a single pass. However, high error rate limits the ability to reconstruct heterogeneous viral population composed of rare, related mutant variants. In this paper, we present 2SNV, a method able to tolerate the high error-rate of the single-molecule protocol and reconstruct mutant variants. 2SNV uses linkage between single nucleotide variations to efficiently distinguish them from read errors. To benchmark the sensitivity of 2SNV, we performed a single-molecule sequencing experiment on a sample containing a titrated level of known viral mutant variants. Our method is able to accurately reconstruct clone with frequency of 0.2 % and distinguish clones that differed in only two nucleotides distantly located on the genome. 2SNV outperforms existing methods for full-length viral mutant reconstruction. The open source implementation of 2SNV is freely available for download at http://?alan.?cs.?gsu.?edu/?NGS/???q=?content/?2snv.


July 7, 2019  |  

BAC-pool sequencing and analysis confirms growth-associated QTLs in the Asian seabass genome.

The Asian seabass is an important marine food fish that has been cultured for several decades in Asia Pacific. However, the lack of a high quality reference genome has hampered efforts to improve its selective breeding. A 3D BAC pool set generated in this study was screened using 22 SSR markers located on linkage group 2 which contains a growth-related QTL region. Seventy-two clones corresponding to 22 FPC contigs were sequenced by Illumina MiSeq technology. We co-assembled the MiSeq-derived scaffolds from each FPC contig with error-corrected PacBio reads, resulting in 187 sequences covering 9.7?Mb. Eleven genes annotated within this region were found to be potentially associated with growth and their tissue-specific expression was investigated. Correlation analysis demonstrated that SNPs in ctsb, skp1 and ppp2ca can be potentially used as markers for selecting fast-growing fingerlings. Conserved syntenies between seabass LG2 and five other teleosts were identified. This study i) provided a 10?Mb targeted genome assembly; ii) demonstrated NGS of BAC pools as a potential approach for mining candidates underlying QTLs of this species; iii) detected eleven genes potentially responsible for growth in the QTL region; and iv) identified useful SNP markers for selective breeding programs of Asian seabass.


July 7, 2019  |  

Improved assembly of noisy long reads by k-mer validation.

Genome assembly depends critically on read length. Two recent technologies, from Pacific Biosciences (PacBio) and Oxford Nanopore, produce read lengths >20 kb, which yield de novo genome assemblies with vastly greater contiguity than those based on Sanger, Illumina, or other technologies. However, the very high error rates of these two new technologies (~15% per base) makes assembly imprecise at repeats longer than the read length and computationally expensive. Here we show that the contiguity and quality of the assembly of these noisy long reads can be significantly improved at a minimal cost, by leveraging on the low error rate and low cost of Illumina short reads. Namely, k-mers from the PacBio raw reads that are not present in Illumina reads (which account for ~95% of the distinct k-mers) are deemed sequencing errors and ignored at the seed alignment step. By focusing on the ~5% of k-mers that are error free, read overlap sensitivity is dramatically increased. Of equal importance, the validation procedure can be extended to exclude repetitive k-mers, which prevents read miscorrection at repeats and further improves the resulting assemblies. We tested the k-mer validation procedure using one long-read technology (PacBio) and one assembler (MHAP/Celera Assembler), but it is very likely to yield analogous improvements with alternative long-read technologies and assemblers, such as Oxford Nanopore and BLASR/DALIGNER/Falcon, respectively.© 2016 Carvalho et al.; Published by Cold Spring Harbor Laboratory Press.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.