fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Complete genome sequence of Melissococcus plutonius DAT561, a strain that shows an unusual growth profile, obtained by PacBio sequencing.

Melissococcus plutonius is the causative agent of European foulbrood, and its isolates were believed to be remarkably genetically homogeneous. However, recent epidemiological and pathogenic studies have shown this pathogen to be more heterogeneous than expected. Herein, we present the whole-genome sequence of M. plutonius DAT561, a representative atypical strain. Copyright © 2018 Okumura et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Lactobacillus paracasei EG9, a strain accelerating free amino acid production during cheese ripening.

Lactobacillus paracasei EG9 is a strain isolated from well-ripened cheese and accelerates free amino acid production during cheese ripening. Its complete genome sequence was determined using the PacBio RS II platform, revealing a single circular chromosome of 2,927,257 bp, a G+C content of 46.59%, and three plasmids. Copyright © 2018 Asahina et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Pseudomonas aeruginosa K34-7, a carbapenem-resistant isolate of the high-risk sequence type 233.

Carbapenem-resistant Pseudomonas aeruginosa is defined as a textquotedblleftcriticaltextquotedblright priority pathogen for the development of new antibiotics. Here we report the complete genome sequence of an extensively drug-resistant, Verona integron-encoded metallo-ß-lactamase-expressing isolate belonging to the high-risk sequence type 233.

Read More »

Sunday, July 7, 2019

Complete genome sequence of a vancomycin-resistant sequence type 203 Enterococcus faecium strain with vanA belonging to complex type 859.

In 2014, the first vancomycin-resistant (encoded by vanA) Enterococcus faecium isolate belonging to sequence type 203 (ST203) and complex type 859 (CT859) was detected in Denmark. In 2016, 64% of the Danish clinical vanA E. faecium isolates belonged to ST203 and CT859. Using Pacific Biosciences (PacBio) RS II sequencing, we describe the genome of ST203 CT859 vanA E. faecium.

Read More »

Sunday, July 7, 2019

Closed complete genome sequences of two nontypeable Haemophilus influenzae strains containing novel modA alleles from the sputum of patients with chronic obstructive pulmonary disease.

Nontypeable Haemophilus influenzae (NTHi) is an important bacterial pathogen that causes otitis media and exacerbations of chronic obstructive pulmonary disease (COPD). Here, we report the complete genome sequences of NTHi strains 10P129H1 and 84P36H1, isolated from COPD patients, which contain the phase-variable epigenetic regulators ModA15 and ModA18, respectively.

Read More »

Sunday, July 7, 2019

Characterization and genome analysis of a phthalate esters-degrading strain Sphingobium yanoikuyae SHJ.

A bacterium capable of utilizing dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), and diisobuthyl phthalate (DIBP) as the sole carbon and energy source was isolated from shallow aquifer sediments. The strain was identified as Sphingobium yanoikuyae SHJ based on morphological characteristics, 16S rDNA gene phylogeny, and whole genome average nucleotide identity (ANI). The degradation half-life of DBP with substrate concentration of 8.5 and 50.0 mg/L by strain SHJ was 99.7 and 101.4 hours, respectively. The optimum degradation rate of DBP by SHJ was observed at 30°C and weak alkaline (pH 7.5). Genome sequence of the strain SHJ showed…

Read More »

Sunday, July 7, 2019

Clustering of circular consensus sequences: accurate error correction and assembly of single molecule real-time reads from multiplexed amplicon libraries.

Targeted resequencing with high-throughput sequencing (HTS) platforms can be used to efficiently interrogate the genomes of large numbers of individuals. A critical issue for research and applications using HTS data, especially from long-read platforms, is error in base calling arising from technological limits and bioinformatic algorithms. We found that the community standard long amplicon analysis (LAA) module from Pacific Biosciences is prone to substantial bioinformatic errors that raise concerns about findings based on this pipeline, prompting the need for a new method.A single molecule real-time (SMRT) sequencing-error correction and assembly pipeline, C3S-LAA, was developed for libraries of pooled amplicons. By…

Read More »

Sunday, July 7, 2019

Nanoarrays on passivated aluminum surface for site-specific immobilization of biomolecules

The rapid development of biosensing platforms for highly sensitive and specific detection raises the desire of precise localization of biomolecules onto various material surfaces. Aluminum has been strategically employed in the biosensor system due to its compatibility with CMOS technology and its optical and electrical properties such as prominent propagation of surface plasmons. Herein, we present an adaptable method for preparation of carbon nanoarrays on aluminum surface passivated with poly(vinylphosphonic acid) (PVPA). The carbon nanoarrays were defined by means of electron beam induced deposition (EBID) and they were employed to realize site-specific immobilization of target biomolecules. To demonstrate the concept,…

Read More »

Sunday, July 7, 2019

Draft genome sequence of Tuber borchii Vittad., a whitish edible truffle.

The ascomycete Tuber borchii (Pezizomycetes) is a whitish edible truffle that establishes ectomycorrhizal symbiosis with trees and shrubs. This fungus is ubiquitous in Europe and is also cultivated outside Europe. Here, we present the draft genome sequence of T. borchii strain Tbo3840 (97.18 Mb in 969 scaffolds, with 12,346 predicted protein-coding genes).

Read More »

Sunday, July 7, 2019

The complete genome sequence of Rhodobaca barguzinensis alga05 (DSM 19920) documents its adaptation for life in soda lakes.

Soda lakes, with their high salinity and high pH, pose a very challenging environment for life. Microorganisms living in these harsh conditions have had to adapt their physiology and gene inventory. Therefore, we analyzed the complete genome of the haloalkaliphilic photoheterotrophic bacterium Rhodobaca barguzinensis strain alga05. It consists of a 3,899,419 bp circular chromosome with 3624 predicted coding sequences. In contrast to most of Rhodobacterales, this strain lacks any extrachromosomal elements. To identify the genes responsible for adaptation to high pH, we compared the gene inventory in the alga05 genome with genomes of 17 reference strains belonging to order Rhodobacterales. We…

Read More »

Sunday, July 7, 2019

Near- complete genome sequences of Streptomyces sp. strains AC1-42T and AC1-42W, isolated from bat guano from Cabalyorisa Cave, Mabini, Pangasinan, Philippines.

Streptomyces sp. strains AC1-42T and AC1-42W, isolated from bat guano from Cabalyorisa Cave, Mabini, Pangasinan, Philippines, are active against Bacillus subtilis subsp. subtilis KCTC 3135T. The near-complete genome sequences reported here represent a possible source of ribosomally synthesized, posttranslationally mod- ified peptides, such as lantipeptides, bacteriocins, linaridin, and a lasso peptide.

Read More »

1 64 65 66 67 68

Subscribe for blog updates:

Archives

Search

Categories