Menu
April 21, 2020  |  

The complete mitochondrial genome of the New Zealand parasitic roundworm Haemonchus contortus (Trichostrongyloidea: Haemonchidae) field strain NZ_Hco_NP

The complete mitochondrial genome of the New Zealand parasitic nematode Haemonchus contortus field strain NZ_Hco_NP was sequenced and annotated. The 14,001bp-long mitogenome contains 12 protein-coding genes (atp8 gene missing), two ribosomal RNAs, 22 transfer RNAs, and a 583bp non- coding region. Phylogenetic analysis showed that H. contortus NZ_Hco_NP forms a monophyletic clus- ter with the remaining three Haemonchidae species, and further illustrates the high levels of diversity and gene flow among Trichostrongylidae.


April 21, 2020  |  

The complete mitochondrial genome of the tree frog, Polypedates braueri (Anura, Rhacophoridae)

We determined the complete mitochondrial genome of the tree frog, Polypedates braueri using next generation sequencing (NGS) and Sanger sequencing. The mitogenome of P. braueri was 19,904?bp in length, which contained 12 protein-coding genes, 22 tRNAs, two rRNAs, and two control regions (D-Loop). A noncoding sequence (NC) was discovered between tRNALys and ATP6 gene, as well as replaced the original position of ATP8 gene. The ND5 gene was found between the two control regions. More mitochondrial genomic information will contribute to revealing the phylogenetic relationships among species of the genus Polypedates.


April 21, 2020  |  

The complete mitogenome of clam Corbicula fluminea determined using next-generation and PacBio sequencing

Corbicula fluminea is an important aquatic commercial species in China. In this study, we present the complete mitogenome and a phylogenetic analysis of C. fluminea, determined using next-generation and PacBio long read sequencing. The mitogenome of C. fluminea is 17,423bp in size, including 13 protein-coding genes, two ribosomal RNA genes, 22 tRNA genes, and a putative control region, all located on the same strand. The base composition of the entire mitogenome showed a conspicuous AþT bias of 70.5 %. The entire mitogenome data produced in this study provides the genomic resour- ces available for future evolutionary studies.


April 21, 2020  |  

Mitochondrial genome of the entomophthoroid fungus Conidiobolus heterosporus provides insights into evolution of basal fungi.

Entomophthoroid fungi represent an ecologically important group of fungal pathogens on insects. Here, the whole mitogenome of Conidiobolus heterosporus, one of the entomophthoroid fungi, was described and compared to those early branching fungi with available mitogenomes. The 53,364-bp circular mitogenome of C. heterosporus contained two rRNA genes, 14 standard protein-coding genes, 26 tRNA genes, and three free-standing ORFs. Thirty introns interrupted nine mitochondrial genes. Phylogenetic analysis based on mitochondrion-encoded proteins revealed that C. heterosporus was most close to Zancudomyces culisetae in the Zoopagomycota of basal fungi. Comparison on mitogenomes of 23 basal fungi revealed great variabilities in terms of mitogenome conformation (circular or linear), genetic code (codes 1, 4, or 16), AT contents (53.3-85.5%), etc. These mitogenomes varied from 12.0 to 97.3 kb in sizes, mainly due to different numbers of genes and introns. They showed frequent DNA rearrangement events and a high variability of gene order, although high synteny and conserved gene order were also present between closely related species. By reporting the first mitogenome in Entomophthoromycotina and the second in Zoopagomycota, this study greatly enhanced our understanding on evolution of basal fungi.


April 21, 2020  |  

Evolution and Diversification of Kiwifruit Mitogenomes through Extensive Whole-Genome Rearrangement and Mosaic Loss of Intergenic Sequences in a Highly Variable Region.

Angiosperm mitochondrial genomes (mitogenomes) are notable for their extreme diversity in both size and structure. However, our current understanding of this diversity is limited, and the underlying mechanism contributing to this diversity remains unclear. Here, we completely assembled and compared the mitogenomes of three kiwifruit (Actinidia) species, which represent an early divergent lineage in asterids. We found conserved gene content and fewer genomic repeats, particularly large repeats (>1?kb), in the three mitogenomes. However, sequence transfers such as intracellular events are variable and dynamic, in which both ancestral shared and recently species-specific events as well as complicated transfers of two plastid-derived sequences into the nucleus through the mitogenomic bridge were detected. We identified extensive whole-genome rearrangements among kiwifruit mitogenomes and found a highly variable V region in which fragmentation and frequent mosaic loss of intergenic sequences occurred, resulting in greatly interspecific variations. One example is the fragmentation of the V region into two regions, V1 and V2, giving rise to the two mitochondrial chromosomes of Actinidia chinensis. Finally, we compared the kiwifruit mitogenomes with those of other asterids to characterize their overall mitogenomic diversity, which identified frequent gain/loss of genes/introns across lineages. In addition to repeat-mediated recombination and import-driven hypothesis of genome size expansion reported in previous studies, our results highlight a pattern of dynamic structural variation in plant mitogenomes through global genomic rearrangements and species-specific fragmentation and mosaic loss of intergenic sequences in highly variable regions on the basis of a relatively large ancestral mitogenome. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


April 21, 2020  |  

The mitochondrial genome analysis of Isaria tenuipes (Hypocreales: Cordycipitaceae)

The mitochondrial genome of Isaria tenuipes, strain TTZ2017-3, was sequenced on the Illumina Hiseq 4000 and the PacBio Sequel Sequencer and annotated. The genome is 66703bp in length, encoding 15 conserved protein-coding genes (PCGs) including ribosomal protein S3, two rRNA genes and 26 tRNA genes. The nucleotide composition of I. tenuipes mitochondrial genome was 39.1% of A, 35.6% of T, 11.2% of C, 14.2% of G, 74.7% of AþT content. Phylogenetic analysis with other Hypocreales species revealed that I. tenuipes was more closely related to Cordyceps militaris, separated from Lecanicillium muscarium, Paecilomyces hepialid, and Beauveria species with Cordyceps teleomorph. This study provided valuable information on the gene contents of the mitochondrial genome and would facilitate the study of function and evolution of Isaria.


April 21, 2020  |  

Mitogenome types of two Lentinula edodes sensu lato populations in China.

China has two populations of Lentinula edodes sensu lato as follows: L. edodes sensu stricto and an unexcavated morphological species respectively designated as A and B. In a previous study, we found that the nuclear types of the two populations are distinct and that both have two branches (A1, A2, B1 and B2) based on the internal transcribed spacer 2 (ITS2) sequence. In this paper, their mitogenome types were studied by resequencing 20 of the strains. The results show that the mitogenome type (mt) of ITS2-A1 was mt-A1, that of ITS2-A2 was mt-A2, and those of ITS2-B1 and ITS2-B2 were mt-B. The strains with heterozygous ITS2 types had one mitogenome type, and some strains possessed a recombinant mitogenome. This indicated that there may be frequent genetic exchanges between the two populations and both nuclear and mitochondrial markers were necessary to identify the strains of L. edodes sensu lato. In addition, by screening SNP diversity and comparing four complete mitogenomes among mt-A1, mt-A2 and mt-B, the cob, cox3, nad2, nad3, nad4, nad5, rps3 and rrnS genes could be used to identify mt-A and mt-B and that the cox1, nad1 and rrnL genes could be used to identify mt-A1, mt-A2 and mt-B.


April 21, 2020  |  

Mitochondrial genome and transcriptome analysis of five alloplasmic male-sterile lines in Brassica juncea.

Alloplasmic lines, in which the nuclear genome is combined with wild cytoplasm, are often characterized by cytoplasmic male sterility (CMS), regardless of whether it was derived from sexual or somatic hybridization with wild relatives. In this study, we sequenced and analyzed the mitochondrial genomes of five such alloplasmic lines in Brassica juncea.The assembled and annotated mitochondrial genomes of the five alloplasmic lines were found to have virtually identical gene contents. They preserved most of the ancestral mitochondrial segments, and the same candidate male sterility gene (orf108) was found harbored in mitotype-specific sequences. We also detected promiscuous sequences of chloroplast origin that were conserved among plants of the Brassicaceae, and found the RNA editing profiles to vary across the five mitochondrial genomes.On the basis of our characterization of the genetic nature of five alloplasmic mitochondrial genomes, we speculated that the putative candidate male sterility gene orf108 may not be responsible for the CMS observed in Brassica oxyrrhina and Diplotaxis catholica. Furthermore, we propose the potential coincidence of CMS in alloplasmic lines. Our findings lay the foundation for further elucidation of male sterility gene.


April 21, 2020  |  

Long-read sequencing reveals a 4.4 kb tandem repeat region in the mitogenome of Echinococcus granulosus (sensu stricto) genotype G1.

Echinococcus tapeworms cause a severe helminthic zoonosis called echinococcosis. The genus comprises various species and genotypes, of which E. granulosus (sensu stricto) represents a significant global public health and socioeconomic burden. Mitochondrial (mt) genomes have provided useful genetic markers to explore the nature and extent of genetic diversity within Echinococcus and have underpinned phylogenetic and population structure analyses of this genus. Our recent work indicated a sequence gap (>?1 kb) in the mt genomes of E. granulosus genotype G1, which could not be determined by PCR-based Sanger sequencing. The aim of the present study was to define the complete mt genome, irrespective of structural complexities, using a long-read sequencing method.We extracted high molecular weight genomic DNA from protoscoleces from a single cyst of E. granulosus genotype G1 from a sheep from Australia using a conventional method and sequenced it using PacBio Sequel (long-read) technology, complemented by BGISEQ-500 short-read sequencing. Sequence data obtained were assembled using a recently-developed workflow.We assembled a complete mt genome sequence of 17,675 bp, which is >?4 kb larger than the complete mt genomes known for E. granulosus genotype G1. This assembly includes a previously-elusive tandem repeat region, which is 4417 bp long and consists of ten near-identical 441-445 bp repeat units, each harbouring a 184 bp non-coding region and adjacent regions. We also identified a short non-coding region of 183 bp, which includes an inverted repeat.We report what we consider to be the first complete mt genome of E. granulosus genotype G1 and characterise all repeat regions in this genome. The numbers, sizes, sequences and functions of tandem repeat regions remain to be studied in different isolates of genotype G1 and in other genotypes and species. The discovery of such ‘new’ repeat elements in the mt genome of genotype G1 by PacBio sequencing raises a question about the completeness of some published genomes of taeniid cestodes assembled from conventional or short-read sequence datasets. This study shows that long-read sequencing readily overcomes the challenges of assembling repeat elements to achieve improved genomes.


April 21, 2020  |  

Mitochondrial and chloroplast genomes provide insights into the evolutionary origins of quinoa (Chenopodium quinoa Willd.).

Quinoa has recently gained international attention because of its nutritious seeds, prompting the expansion of its cultivation into new areas in which it was not originally selected as a crop. Improving quinoa production in these areas will benefit from the introduction of advantageous traits from free-living relatives that are native to these, or similar, environments. As part of an ongoing effort to characterize the primary and secondary germplasm pools for quinoa, we report the complete mitochondrial and chloroplast genome sequences of quinoa accession PI 614886 and the identification of sequence variants in additional accessions from quinoa and related species. This is the first reported mitochondrial genome assembly in the genus Chenopodium. Inference of phylogenetic relationships among Chenopodium species based on mitochondrial and chloroplast variants supports the hypotheses that 1) the A-genome ancestor was the cytoplasmic donor in the original tetraploidization event, and 2) highland and coastal quinoas were independently domesticated.


September 22, 2019  |  

Single-molecule long-read transcriptome profiling of Platysternon megacephalum mitochondrial genome with gene rearrangement and control region duplication.

Platysternon megacephalum is the sole living representative of the poorly studied turtle lineage Platysternidae. Their mitochondrial genome has been subject to gene rearrangement and control region duplication, resulting in a unique mitochondrial gene order in vertebrates. In this study, we sequenced the first full-length turtle (P. megacephalum) liver transcriptome using single-molecule real-time sequencing to study the transcriptional mechanisms of its mitochondrial genome. ND5 and ND6 anti-sense (ND6AS) forms a single transcript with the same expression in the human mitochondrial genome, but here we demonstrated differential expression of the rearranged ND5 and ND6AS genes in P. megacephalum. And some polycistronic transcripts were also reported in this study. Notably, we detected some novel long non-coding RNAs with alternative polyadenylation from the duplicated control region, and a novel ND6AS transcript composed of a long non-coding sequence, ND6AS, and tRNA-GluAS. These results provide the first description of a mtDNA transcriptome with gene rearrangement and control region duplication. These findings further our understanding of the fundamental concepts of mitochondrial gene transcription and RNA processing, and provide a new insight into the mechanism of transcription regulation of the mitochondrial genome.


September 22, 2019  |  

Sequence motifs associated with paternal transmission of mitochondrial DNA in the horse mussel, Modiolus modiolus (Bivalvia: Mytilidae).

In the majority of metazoans paternal mitochondria represent evolutionary dead-ends. In many bivalves, however, this paradigm does not hold true; both maternal and paternal mitochondria are inherited. Herein, we characterize maternal and paternal mitochondrial control regions of the horse mussel, Modiolus modiolus (Bivalvia: Mytilidae). The maternal control region is 808bp long, while the paternal control region is longer at 2.3kb. We hypothesize that the size difference is due to a combination of repeated duplications within the control region of the paternal mtDNA genome, as well as an evolutionarily ancient recombination event between two sex-associated mtDNA genomes that led to the insertion of a second control region sequence in the genome that is now transmitted via males. In a comparison to other mytilid male control regions, we identified two evolutionarily Conserved Motifs, CMA and CMB, associated with paternal transmission of mitochondrial DNA. CMA is characterized by a conserved purine/pyrimidine pattern, while CMB exhibits a specific 13bp nucleotide string within a stem and loop structure. The identification of motifs CMA and CMB in M. modiolus extends our understanding of Sperm Transmission Elements (STEs) that have recently been identified as being associated with the paternal transmission of mitochondria in marine bivalves. Copyright © 2017 Elsevier B.V. All rights reserved.


September 22, 2019  |  

Tumor-specific mitochondrial DNA variants are rarely detected in cell-free DNA.

The use of blood-circulating cell-free DNA (cfDNA) as a “liquid biopsy” in oncology is being explored for its potential as a cancer biomarker. Mitochondria contain their own circular genomic entity (mitochondrial DNA, mtDNA), up to even thousands of copies per cell. The mutation rate of mtDNA is several orders of magnitude higher than that of the nuclear DNA. Tumor-specific variants have been identified in tumors along the entire mtDNA, and their number varies among and within tumors. The high mtDNA copy number per cell and the high mtDNA mutation rate make it worthwhile to explore the potential of tumor-specific cf-mtDNA variants as cancer marker in the blood of cancer patients. We used single-molecule real-time (SMRT) sequencing to profile the entire mtDNA of 19 tissue specimens (primary tumor and/or metastatic sites, and tumor-adjacent normal tissue) and 9 cfDNA samples, originating from 8 cancer patients (5 breast, 3 colon). For each patient, tumor-specific mtDNA variants were detected and traced in cfDNA by SMRT sequencing and/or digital PCR to explore their feasibility as cancer biomarker. As a reference, we measured other blood-circulating biomarkers for these patients, including driver mutations in nuclear-encoded cfDNA and cancer-antigen levels or circulating tumor cells. Four of the 24 (17%) tumor-specific mtDNA variants were detected in cfDNA, however at much lower allele frequencies compared to mutations in nuclear-encoded driver genes in the same samples. Also, extensive heterogeneity was observed among the heteroplasmic mtDNA variants present in an individual. We conclude that there is limited value in tracing tumor-specific mtDNA variants in blood-circulating cfDNA with the current methods available. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

The complete mitochondrial genome of the Basidiomycete edible fungus Hypsizygus marmoreus

The complete mitochondrial genome of the edible fungus Hypsizygus marmoreus was published in this paper. It was determined using Pacbio and Illumina sequencing. The complete mitochondrial DNA (mtDNA) is 106,417?bp in length with a GC content of 31.74%, which was the fourth large mitogenome in Agaricales. The circular mitogenome encoded 67 protein-coding genes and one ribosomal RNAs (rns). Among these genes, 13 conserved protein-coding genes were determined in the genome, including 6 subunits of NAD dehydrogenase (nad1-4, 4L and 6), three cytochrome oxidases (cox1-3), one apocytochrome b (cob) and three ATP synthases (atp6, apt 8 and apt 9). The phylogenic analysis confirmed that H. marmoreus (Lyophyllaceae) clustered together with Tricholoma matsutake (Tricholomataceae).


September 22, 2019  |  

The complete mitochondrial genome of the early flowering plant Nymphaea colorata is highly repetitive with low recombination.

Mitochondrial genomes of flowering plants (angiosperms) are highly dynamic in genome structure. The mitogenome of the earliest angiosperm Amborella is remarkable in carrying rampant foreign DNAs, in contrast to Liriodendron, the other only known early angiosperm mitogenome that is described as ‘fossilized’. The distinctive features observed in the two early flowering plant mitogenomes add to the current confusions of what early flowering plants look like. Expanded sampling would provide more details in understanding the mitogenomic evolution of early angiosperms. Here we report the complete mitochondrial genome of water lily Nymphaea colorata from Nymphaeales, one of the three orders of the earliest angiosperms.Assembly of data from Pac-Bio long-read sequencing yielded a circular mitochondria chromosome of 617,195 bp with an average depth of 601×. The genome encoded 41 protein coding genes, 20 tRNA and three rRNA genes with 25 group II introns disrupting 10 protein coding genes. Nearly half of the genome is composed of repeated sequences, which contributed substantially to the intron size expansion, making the gross intron length of the Nymphaea mitochondrial genome one of the longest among angiosperms, including an 11.4-Kb intron in cox2, which is the longest organellar intron reported to date in plants. Nevertheless, repeat mediated homologous recombination is unexpectedly low in Nymphaea evidenced by 74 recombined reads detected from ten recombinationally active repeat pairs among 886,982 repeat pairs examined. Extensive gene order changes were detected in the three early angiosperm mitogenomes, i.e. 38 or 44 events of inversions and translocations are needed to reconcile the mitogenome of Nymphaea with Amborella or Liriodendron, respectively. In contrast to Amborella with six genome equivalents of foreign mitochondrial DNA, not a single horizontal gene transfer event was observed in the Nymphaea mitogenome.The Nymphaea mitogenome resembles the other available early angiosperm mitogenomes by a similarly rich 64-coding gene set, and many conserved gene clusters, whereas stands out by its highly repetitive nature and resultant remarkable intron expansions. The low recombination level in Nymphaea provides evidence for the predominant master conformation in vivo with a highly substoichiometric set of rearranged molecules.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.