Menu
July 7, 2019

Draft genome sequence of Streptomyces sp. strain Wb2n-11, a desert isolate with broad-spectrum antagonism against soilborne phytopathogens.

Streptomyces sp. strain Wb2n-11, isolated from native desert soil, exhibited broad-spectrum antagonism against plant pathogenic fungi, bacteria, and nematodes. The 8.2-Mb draft genome reveals genes putatively responsible for its promising biocontrol activity and genes which enable the soil bacterium to directly interact beneficially with plants. Copyright © 2015 Köberl et al.


July 7, 2019

Whole-genome mapping as a novel high-resolution typing tool for Legionella pneumophila.

Legionella is the causative agent for Legionnaires’ disease (LD) and is responsible for several large outbreaks in the world. More than 90% of LD cases are caused by Legionella pneumophila, and studies on the origin and transmission routes of this pathogen rely on adequate molecular characterization of isolates. Current typing of L. pneumophila mainly depends on sequence-based typing (SBT). However, studies have shown that in some outbreak situations, SBT does not have sufficient discriminatory power to distinguish between related and nonrelated L. pneumophila isolates. In this study, we used a novel high-resolution typing technique, called whole-genome mapping (WGM), to differentiate between epidemiologically related and nonrelated L. pneumophila isolates. Assessment of the method by various validation experiments showed highly reproducible results, and WGM was able to confirm two well-documented Dutch L. pneumophila outbreaks. Comparison of whole-genome maps of the two outbreaks together with WGMs of epidemiologically nonrelated L. pneumophila isolates showed major differences between the maps, and WGM yielded a higher discriminatory power than SBT. In conclusion, WGM can be a valuable alternative to perform outbreak investigations of L. pneumophila in real time since the turnaround time from culture to comparison of the L. pneumophila maps is less than 24 h. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 7, 2019

Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis.

Multidrug resistance, strong side effects, and compliance problems in TB chemotherapy mandate new ways to kill Mycobacterium tuberculosis (Mtb). Here we show that deletion of the gene encoding homoserine transacetylase (metA) inactivates methionine and S-adenosylmethionine (SAM) biosynthesis in Mtb and renders this pathogen exquisitely sensitive to killing in immunocompetent or immunocompromised mice, leading to rapid clearance from host tissues. Mtb ?metA is unable to proliferate in primary human macrophages, and in vitro starvation leads to extraordinarily rapid killing with no appearance of suppressor mutants. Cell death of Mtb ?metA is faster than that of other auxotrophic mutants (i.e., tryptophan, pantothenate, leucine, biotin), suggesting a particularly potent mechanism of killing. Time-course metabolomics showed complete depletion of intracellular methionine and SAM. SAM depletion was consistent with a significant decrease in methylation at the DNA level (measured by single-molecule real-time sequencing) and with the induction of several essential methyltransferases involved in biotin and menaquinone biosynthesis, both of which are vital biological processes and validated targets of antimycobacterial drugs. Mtb ?metA could be partially rescued by biotin supplementation, confirming a multitarget cell death mechanism. The work presented here uncovers a previously unidentified vulnerability of Mtb-the incapacity to scavenge intermediates of SAM and methionine biosynthesis from the host. This vulnerability unveils an entirely new drug target space with the promise of rapid killing of the tubercle bacillus by a new mechanism of action.


July 7, 2019

A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii.

Infections with Acinetobacter baumannii, one of the most troublesome and least studied multidrug-resistant superbugs, are increasing at alarming rates. A. baumannii encodes a type VI secretion system (T6SS), an antibacterial apparatus of Gram-negative bacteria used to kill competitors. Expression of the T6SS varies among different strains of A. baumannii, for which the regulatory mechanisms are unknown. Here, we show that several multidrug-resistant strains of A. baumannii harbor a large, self-transmissible resistance plasmid that carries the negative regulators for T6SS. T6SS activity is silenced in plasmid-containing, antibiotic-resistant cells, while part of the population undergoes frequent plasmid loss and activation of the T6SS. This activation results in T6SS-mediated killing of competing bacteria but renders A. baumannii susceptible to antibiotics. Our data show that a plasmid that has evolved to harbor antibiotic resistance genes plays a role in the differentiation of cells specialized in the elimination of competing bacteria.


July 7, 2019

Isolation and characterization of an interactive culture of two Paenibacillus species with moderately thermophilic desulfurization ability.

To isolate and characterize novel thermophilic bacteria capable of biodesulfurization of petroleum.A culture containing two Paenibacillus spp. (denoted “32O-W” and “32O-Y”) was isolated by repeated passage of a soil sample at up to 55 °C in medium containing dibenzothiophene (DBT) as sulfur source. Only 32O-Y metabolized DBT, apparently via the 4S pathway; maximum activity occurred from 40 to 45 °C, with some activity up to at least 50 °C. 32O-W enhanced DBT metabolism by 32O-Y (by 22-74 % at 40-50 °C). With sulfate as sulfur source, 32O-Y and 32O-W grew well up to 58 and 63 °C, respectively. Selection of a mixed culture of 32O-Y and 32O-W at 54 °C increased DBT metabolism 36-42 % from 40 to 45 °C. Genome sequencing identified desulfurization gene homologs in the strains consistent with their desulfurization properties.The 32O-Y/32O-W culture may be a useful starting point for development of an improved thermophilic petroleum biodesulfurization process.


July 7, 2019

Draft genome sequences of Burkholderia contaminans, a Burkholderia cepacia complex species that is increasingly recovered from cystic fibrosis patients.

Burkholderia contaminans belongs to the Burkholderia cepacia complex (BCC), a group of bacteria that are ubiquitous in the environment and capable of infecting the immunocompromised and people with cystic fibrosis. We report here draft genome sequences for the B. contaminans type strain LMG 23361 and an Argentinian cystic fibrosis sputum isolate. Copyright © 2015 Bloodworth et al.


July 7, 2019

Acetylcholinesterase 1 in populations of organophosphate-resistant North American strains of the cattle tick, Rhipicephalus microplus (Acari: Ixodidae).

Rhipicephalus microplus, the cattle fever tick, is a global economic problem to the cattle industry due to direct infestation of cattle and pathogens transmitted during feeding. Cattle fever tick outbreaks continue to occur along the Mexico-US border even though the tick has been eradicated from the USA. The organophosphate (OP) coumaphos targets acetylcholinesterase (AChE) and is the approved acaricide for eradicating cattle fever tick outbreaks. There is evidence for coumaphos resistance developing in cattle ticks in Mexico, and OP-resistant R. microplus ticks were discovered in outbreak populations of Texas in 2005. The molecular basis of coumaphos resistance is not known, and our study was established to gather further information on whether AChE1 is involved in the resistance mechanism. We also sought information on allele diversity in tick populations with different levels of coumaphos resistance. The overarching project goal was to define OP resistance-associated gene mutations such that a DNA-based diagnostic assay could be developed to assist the management of resistance. Three different AChE transcripts have been reported in R. microplus, and supporting genomic and transcriptomic data are available at CattleTickBase. Here, we report the complete R. microplus AChE1 gene ascertained by sequencing a bacterial artificial chromosome clone containing the entire coding region and the flanking 5′ and 3′ regions. We also report AChE1 sequences of larval ticks from R. microplus strains having different sensitivities to OP. To accomplish this, we sequenced a 669-bp region of the AChE1 gene corresponding to a 223 amino acid region of exon 2 to assess alleles in seven strains of R. microplus with varying OP resistance phenotypes. We identified 72 AChE1 sequence variants, 2 of which are strongly associated with OP-resistant phenotypes. Esterase-like sequences from the R. microplus transcriptome RmiTr Version 1.0 were compared to the available sequence databases to identify other transcripts with similarity to AChE1.


July 7, 2019

Sequencing of plasmids pAMBL1 and pAMBL2 from Pseudomonas aeruginosa reveals a blaVIM-1 amplification causing high-level carbapenem resistance.

Carbapenemases are a major concern for the treatment of infectious diseases caused by Gram-negative bacteria. Although plasmids are responsible for the spread of resistance genes among these pathogens, there is limited information on the nature of the mobile genetic elements carrying carbapenemases in Pseudomonas aeruginosa.We combined data from two different next-generation sequencing platforms, Illumina HiSeq2000 and PacBio RSII, to obtain the complete nucleotide sequences of two blaVIM-1-carrying plasmids (pAMBL1 and pAMBL2) isolated from P. aeruginosa clinical isolates.Plasmid pAMBL1 has 26?440 bp and carries a RepA_C family replication protein. pAMBL1 is similar to plasmids pNOR-2000 and pKLC102 from P. aeruginosa and pAX22 from Achromobacter xylosoxidans, which also carry VIM-type carbapenemases. pAMBL2 is a 24?133 bp plasmid with a replication protein that belongs to the Rep_3 family. It shows a high degree of homology with a fragment of the blaVIM-1-bearing plasmid pPC9 from Pseudomonas putida. Plasmid pAMBL2 carries three copies of the blaVIM-1 cassette in an In70 class 1 integron conferring, unlike pAMBL1, high-level resistance to carbapenems.We present two new plasmids coding for VIM-1 carbapenemase from P. aeruginosa and report that the presence of three copies of blaVIM-1 in pAMBL2 produces high-level resistance to carbapenems.© The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019

Genome sequence of the haloarchaeon Haloterrigena jeotgali type strain A29(T) isolated from salt-fermented food.

Haloterrigena jeotgali is a halophilic archaeon within the family Natrialbaceae that was isolated from shrimp jeotgal, a traditional Korean salt-fermented food. A29(T) is the type strain of H. jeotgali, and is a Gram-negative staining, non-motile, rod-shaped archaeon that grows in 10 %-30 % (w/v) NaCl. We present the annotated H. jeotgali A29(T) genome sequence along with a summary of its features. The 4,131,621 bp genome with a GC content of 64.9 % comprises 4,215 protein-coding genes and 127 RNA genes. The sequence can provide useful information on genetic mechanisms that enable haloarchaea to endure a hypersaline environment.


July 7, 2019

Identification and structural characterization of naturally-occurring broad-spectrum cyclic antibiotics isolated from Paenibacillus.

The rise of antimicrobial resistance necessitates the discovery and/or production of novel antibiotics. Isolated strains of Paenibacillus alvei were previously shown to exhibit antimicrobial activity against a number of pathogens, such as E. coli, Salmonella, and methicillin-resistant Staphylococcus aureus (MRSA). The responsible antimicrobial compounds were isolated from these Paenibacillus strains and a combination of low and high resolution mass spectrometry with multiple-stage tandem mass spectrometry was used for identification. A group of closely related cyclic lipopeptides was identified, differing primarily by fatty acid chain length and one of two possible amino acid substitutions. Variation in the fatty acid length resulted in mass differences of 14 Da and yielded groups of related MS(n) spectra. Despite the inherent complexity of MS/MS spectra of cyclic compounds, straightforward analysis of these spectra was accomplished by determining differences in complementary product ion series between compounds that differ in molecular weight by 14 Da. The primary peptide sequence assignment was confirmed through genome mining; the combination of these analytical tools represents a workflow that can be used for the identification of complex antibiotics. The compounds also share amino acid sequence similarity to a previously identified broad-spectrum antibiotic isolated from Paenibacillus. The presence of such a wide distribution of related compounds produced by the same organism represents a novel class of broad-spectrum antibiotic compounds.


July 7, 2019

Whole genome sequence of Pseudomonas aeruginosa F9676, an antagonistic bacterium isolated from rice seed.

Pseudomonas aeruginosa is a group of bacteria, which can be isolated from diverse ecological niches. P. aeruginosa strain F9676 was first isolated from a rice seed sample in 2003. It showed strong antagonism against several plant pathogens. In this study, whole genome sequencing was carried out. The total genome size of F9676 is 6368,008bp with 5586 coding genes (CDS), 67 tRNAs and 3 rRNAs. The genome sequence of F9676 may shed a light on antagonism P. aeruginosa. Copyright © 2015 Elsevier B.V. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.