Menu
July 7, 2019

Complete genome sequence of Bordetella pertussis D420.

Bordetella pertussis is the causative agent of whooping cough, a highly contagious, acute respiratory illness that has seen resurgence despite the use of vaccines. We present the complete genome sequence of a clinical strain of B. pertussis, D420, which is representative of a currently circulating clade of this pathogen. Copyright © 2015 Boinett et al.


July 7, 2019

Co-cultivation and transcriptome sequencing of two co-existing fish pathogens Moritella viscosa and Aliivibrio wodanis.

Aliivibrio wodanis and Moritella viscosa have often been isolated concurrently from fish with winter-ulcer disease. Little is known about the interaction between the two bacterial species and how the presence of one bacterial species affects the behaviour of the other.The impact on bacterial growth in co-culture was investigated in vitro, and the presence of A. wodanis has an inhibitorial effect on M. viscosa. Further, we have sequenced the complete genomes of these two marine Gram-negative species, and have performed transcriptome analysis of the bacterial gene expression levels from in vivo samples. Using bacterial implants in the fish abdomen, we demonstrate that the presence of A. wodanis is altering the gene expression levels of M. viscosa compared to when the bacteria are implanted separately.From expression profiling of the transcriptomes, it is evident that the presence of A. wodanis is altering the global gene expression of M. viscosa. Co-cultivation studies showed that A. wodanis is impeding the growth of M. viscosa, and that the inhibitorial effect is not contact-dependent.


July 7, 2019

Identification and heterologous expression of the chaxamycin biosynthetic gene cluster from Streptomyces leeuwenhoekii.

Streptomyces leeuwenhoekii, isolated from the hyperarid Atacama Desert, produces the new ansamycin-like compounds chaxamycins A to D, which possess potent antibacterial activity and moderate antiproliferative activity. We report the development of genetic tools to manipulate S. leeuwenhoekii and the identification and partial characterization of the 80.2-kb chaxamycin biosynthesis gene cluster, which was achieved by both mutational analysis in the natural producer and heterologous expression in Streptomyces coelicolor A3(2) strain M1152. Restoration of chaxamycin production in a nonproducing ?cxmK mutant (cxmK encodes 3-amino-5-hydroxybenzoic acid [AHBA] synthase) was achieved by supplementing the growth medium with AHBA, suggesting that mutasynthesis may be a viable approach for the generation of novel chaxamycin derivatives. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 7, 2019

Complete genome sequence of Bacillus thuringiensis YC-10, a novel active strain against plant-parasitic nematodes.

Bacillus thuringiensis is an important microbial biopesticide for controlling agricultural pests by the production of toxic parasporal crystals proteins.Here,we report the finished annotated genome sequence of B. thuringiensis YC-10,which is highly toxic to nematodes.The complete genome sequence consists of a circular chromosome and nine circular plasmids,which the biggest plasmid harbors six parasporal crystals proteins genes consisting of cry1Aa, cry1Ac, cry1Ia, cry2Aa, cry2Ab and cryB1. The crystals proteins of Cry1Ia and Cry1Aa have high nematicidal activity against Meloidogyne incognita. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019

Paenibacillus larvae-directed bacteriophage HB10c2 and its application in American Foulbrood-affected honey bee larvae.

Paenibacillus larvae is the causative agent of American foulbrood (AFB), the most serious honey bee brood bacterial disease. We isolated and characterized P. larvae-directed bacteriophages and developed criteria for safe phage therapy. Whole-genome analysis of a highly lytic virus of the family Siphoviridae (HB10c2) provided a detailed safety profile and uncovered its lysogenic nature and a putative beta-lactamase-like protein. To rate its antagonistic activity against the pathogens targeted and to specify potentially harmful effects on the bee population and the environment, P. larvae genotypes ERIC I to IV, representatives of the bee gut microbiota, and a broad panel of members of the order Bacillales were analyzed for phage HB10c2-induced lysis. Breeding assays with infected bee larvae revealed that the in vitro phage activity observed was not predictive of the real-life scenario and therapeutic efficacy. On the basis of the disclosed P. larvae-bacteriophage coevolution, we discuss the future prospects of AFB phage therapy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 7, 2019

Azotobacter genomes: The genome of Azotobacter chroococcum NCIMB 8003 (ATCC 4412).

The genome of the soil-dwelling heterotrophic N2-fixing Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 (ATCC 4412) (Ac-8003) has been determined. It consists of 7 circular replicons totalling 5,192,291 bp comprising a circular chromosome of 4,591,803 bp and six plasmids pAcX50a, b, c, d, e, f of 10,435 bp, 13,852, 62,783, 69,713, 132,724, and 311,724 bp respectively. The chromosome has a G+C content of 66.27% and the six plasmids have G+C contents of 58.1, 55.3, 56.7, 59.2, 61.9, and 62.6% respectively. The methylome has also been determined and 5 methylation motifs have been identified. The genome also contains a very high number of transposase/inactivated transposase genes from at least 12 of the 17 recognised insertion sequence families. The Ac-8003 genome has been compared with that of Azotobacter vinelandii ATCC BAA-1303 (Av-DJ), a derivative of strain O, the only other member of the Azotobacteraceae determined so far which has a single chromosome of 5,365,318 bp and no plasmids. The chromosomes show significant stretches of synteny throughout but also reveal a history of many deletion/insertion events. The Ac-8003 genome encodes 4628 predicted protein-encoding genes of which 568 (12.2%) are plasmid borne. 3048 (65%) of these show > 85% identity to the 5050 protein-encoding genes identified in Av-DJ, and of these 99 are plasmid-borne. The core biosynthetic and metabolic pathways and macromolecular architectures and machineries of these organisms appear largely conserved including genes for CO-dehydrogenase, formate dehydrogenase and a soluble NiFe-hydrogenase. The genetic bases for many of the detailed phenotypic differences reported for these organisms have also been identified. Also many other potential phenotypic differences have been uncovered. Properties endowed by the plasmids are described including the presence of an entire aerobic corrin synthesis pathway in pAcX50f and the presence of genes for retro-conjugation in pAcX50c. All these findings are related to the potentially different environmental niches from which these organisms were isolated and to emerging theories about how microbes contribute to their communities.


July 7, 2019

Novel recA-independent horizontal gene transfer in Escherichia coli K-12.

In bacteria, mechanisms that incorporate DNA into a genome without strand-transfer proteins such as RecA play a major role in generating novelty by horizontal gene transfer. We describe a new illegitimate recombination event in Escherichia coli K-12: RecA-independent homologous replacements, with very large (megabase-length) donor patches replacing recipient DNA. A previously uncharacterized gene (yjiP) increases the frequency of RecA-independent replacement recombination. To show this, we used conjugal DNA transfer, combining a classical conjugation donor, HfrH, with modern genome engineering methods and whole genome sequencing analysis to enable interrogation of genetic dependence of integration mechanisms and characterization of recombination products. As in classical experiments, genomic DNA transfer begins at a unique position in the donor, entering the recipient via conjugation; antibiotic resistance markers are then used to select recombinant progeny. Different configurations of this system were used to compare known mechanisms for stable DNA incorporation, including homologous recombination, F’-plasmid formation, and genome duplication. A genome island of interest known as the immigration control region was specifically replaced in a minority of recombinants, at a frequency of 3 X 10-12 CFU/recipient per hour.


July 7, 2019

Common cell shape evolution of two nasopharyngeal pathogens.

Respiratory infectious diseases are the third cause of worldwide death. The nasopharynx is the portal of entry and the ecological niche of many microorganisms, of which some are pathogenic to humans, such as Neisseria meningitidis and Moraxella catarrhalis. These microbes possess several surface structures that interact with the actors of the innate immune system. In our attempt to understand the past evolution of these bacteria and their adaption to the nasopharynx, we first studied differences in cell wall structure, one of the strongest immune-modulators. We were able to show that a modification of peptidoglycan (PG) composition (increased proportion of pentapeptides) and a cell shape change from rod to cocci had been selected for along the past evolution of N. meningitidis. Using genomic comparison across species, we correlated the emergence of the new cell shape (cocci) with the deletion, from the genome of N. meningitidis ancestor, of only one gene: yacF. Moreover, the reconstruction of this genetic deletion in a bacterium harboring the ancestral version of the locus together with the analysis of the PG structure, suggest that this gene is coordinating the transition from cell elongation to cell division. Accompanying the loss of yacF, the elongation machinery was also lost by several of the descendants leading to the change in the PG structure observed in N. meningitidis. Finally, the same evolution was observed for the ancestor of M. catarrhalis. This suggests a strong selection of these genetic events during the colonization of the nasopharynx. This selection may have been forced by the requirement of evolving permissive interaction with the immune system, the need to reduce the cellular surface exposed to immune attacks without reducing the intracellular storage capacity, or the necessity to better compete for adhesion to target cells.


July 7, 2019

Genome sequence of Halomonas sp. strain MCTG39a, a hydrocarbon-degrading and exopolymeric substance-producing bacterium.

Halomonas sp. strain MCTG39a was isolated from coastal sea surface water based on its ability to utilize n-hexadecane. During growth in marine medium the strain produces an amphiphilic exopolymeric substance (EPS) amended with glucose, which emulsifies a variety of oil hydrocarbon substrates. Here, we present the genome sequence of this strain, which is 4,979,193 bp with 4,614 genes and an average G+C content of 55.0%. Copyright © 2015 Gutierrez et al.


July 7, 2019

First complete genome sequences of Staphylococcus aureus subsp. aureus Rosenbach 1884 (DSM 20231T), determined by PacBio Single-Molecule Real-Time Technology.

The first complete genome sequences of Staphylococcus aureus subsp. aureus Rosenbach 1884 strain DSM 20231(T), the type strain of the bacterium causing staphylococcal disease, were determined using PacBio RS II. The sequences represent the chromosome (2,755,072 bp long; G+C content, 32.86%) and a plasmid (27,490 bp long; G+C content, 30.69%). Copyright © 2015 Shiroma et al.


July 7, 2019

Complete genome sequence of Clostridium carboxidivorans P7(T), a syngas-fermenting bacterium capable of producing long-chain alcohols.

Clostridium carboxidivorans P7(T) is an anaerobe that can ferment syngas (mainly CO or CO2 and H2) to produce acids (acetic and butyric acid), ethanol and long-chain alcohols (butanol and hexanol). Here, the first complete genome sequence for C. carboxidivorans P7(T) is presented. This anaerobic bacterium harbors a 5,732,880bp circular chromosome and a 19,902bp mega-plasmid with 4951 and 22 coding DNA sequence (CDS), respectively. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019

Complete genome sequence of Deinococcus soli N5(T), a gamma-radiation- resistant bacterium isolated from rice field in South Korea.

A Gram-negative, non-motile and short-rod shaped and gamma-radiation-resistant bacterium Deinococcus soli N5(T), isolated from a rice field soil in South Korea. The complete genome of D. soli N5(T) consists of a chromosome (3,236,984bp). The key enzymes for the central DNA repair mechanisms were present in the genome. The enzyme coding genes has been identified which is involving in the nucleotide excision repair (NER) pathway. The gene cluster in the genome sequence suggest that the D. soli N5(T) use (NER) pathways for efficient removal of pyrimidine dimers that are the most abundant type of UV- induced damage. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019

Complete genome sequence of Piscirickettsia salmonis LF-89 (ATCC VR-1361) a major pathogen of farmed salmonid fish.

Piscirickettsia salmonis, the causative agent of salmonid rickettsial septicemia (SRS), is a significant threat to the healthy and sustainable production of salmonid farming industry. This Gram-negative bacterium, originally isolated from a coho salmon in Southern Chile, produces a systemic infection characterized by colonization of several fish organs. P. salmonis is able to infect, survive, and replicate inside salmonid macrophages however little is known about its mechanisms of pathogenesis. Here, we present the whole genome sequence and annotation of the P. salmonis reference strain LF-89 (ATCC VR-1361). The genome contains one circular chromosome of 3,184,851bp and three plasmids, pPSLF89-1 (180,124bp), pPSLF89-2 (33,516bp) and pPSLF89-3 (51,573bp). A total of 2850 protein-coding genes, 56 tRNAs and six copies of 5S-16S-23S rRNA. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019

First complete genome sequence of Clostridium sporogenes DSM 795T, a nontoxigenic surrogate for Clostridium botulinum, determined using PacBio Single-Molecule Real-Time Technology.

The first complete genome sequence of Clostridium sporogenes DSM 795(T), a nontoxigenic surrogate for Clostridium botulinum, was determined in a single contig using the PacBio single-molecule real-time technology. The genome (4,142,990 bp; G+C content, 27.98%) included 86 sets of >1,000-bp identical sequence pairs and 380 tandem repeats. Copyright © 2015 Nakano et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.