X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Monday, April 27, 2020

Product Note: SMRTbell express template prep 2.0 for large-insert libraries

The SMRTbell Express Template Prep Kit 2.0 provides a streamlined, single-tube reaction strategy to generate SMRTbell libraries from 500 bp to >50 kb insert size targets to support large-insert genomic libraries, multiplexed microbial genomes and amplicon sequencing. With this new formulation, we have increased both the yield and efficiency of SMRTbell library preparation for SMRT Sequencing while further minimizing handling-induced DNA damage to retain the integrity of genomic DNA (gDNA). This product note highlights the key benefits, performance, and resources available for supporting de novo genome sequencing and structural variant detection projects. Our large-insert gDNA protocol has been streamlined to…

Read More »

Monday, March 30, 2020

ASHG PacBio Workshop: The Iso-Seq method for discovering alternative splicing in human diseases

In this ASHG workshop presentation, Elizabeth Tseng of PacBio showed how the Iso-Seq method can be used to discover disease-associated alternative splicing. Because this approach to isoform sequencing yields accurate, full-length transcripts requiring no assembly, it’s ideal for disease studies that need a more comprehensive picture of alternative splicing activity. Tseng offered several published examples of how the Iso-Seq method has been used for everything from single-gene studies to whole-transcriptome studies, and also detailed how the latest Sequel System chemistry recovers more genes and produces more usable reads.

Read More »

Monday, March 30, 2020

AGBT Virtual Poster: Direct-Seq – towards library-prep free PacBio sequencing

Paul Coupland and his team at the Wellcome Trust Sanger Institute have developed a sequencing method on the PacBio System for small DNA molecules that avoids the need for a standard library preparation. To date this approach has been applied toward sequencing single-stranded and double-stranded viral genomes, bacterial plasmids, plasmid vector models for DNA-modification analysis, and linear DNA fragments covering an entire bacterial genome. Using direct sequencing it is possible to generate sequence data from as little as 1 ng of DNA, offering a significant advantage over current protocols which typically require 400–500 ng of sheared DNA for the library…

Read More »

Wednesday, February 26, 2020

Library prep and bioinformatics improvements for full-length transcript sequencing on the PacBio Sequel System

The PacBio Iso-Seq method produces high-quality, full-length transcripts of up to 10 kb and longer and has been used to annotate many important plant and animal genomes. Here we describe an improved, simplified library workflow and analysis pipeline that reduces library preparation time, RNA input, and cost. The Iso-Seq V2 Express workflow is a one day protocol that requires only ~300 ng of total RNA input while also reducing the number of reverse transcription and amplification steps down to single reactions. Compared with the previous workflow, the Iso-Seq V2 Express workflow increases the percentage of full-length (FL) reads while achieving…

Read More »

Wednesday, February 26, 2020

Low-input long-read sequencing for complete microbial genomes and metagenomic community analysis

Microbial genome sequencing can be done quickly, easily, and efficiently with the PacBio sequencing instruments, resulting in complete de novo assemblies. Alternative protocols have been developed to reduce the amount of purified DNA required for SMRT Sequencing, to broaden applicability to lower-abundance samples. If 50-100 ng of microbial DNA is available, a 10-20 kb SMRTbell library can be made. The resulting library can be loaded onto multiple SMRT Cells, yielding more than enough data for complete assembly of microbial genomes using the SMRT Portal assembly program HGAP, plus base modification analysis. The entire process can be done in less than…

Read More »

Wednesday, February 26, 2020

Application specific barcoding strategies for SMRT Sequencing

Over the last few years, several advances were implemented in the PacBio RS II System to maximize throughput and efficiency while reducing the cost per sample. The number of useable bases per SMRT Cell now exceeds 1 Gb with the latest P6-C4 chemistry and 6-hour movies. For applications such as microbial sequencing, targeted sequencing, Iso-Seq (full-length isoform sequencing) and Nimblegen’s target enrichment method, current SMRT Cell yields could be an excess relative to project requirements. To this end, barcoding is a viable option for multiplexing samples. For microbial sequencing, multiplexing can be accomplished by tagging sheared genomic DNA during library…

Read More »

Friday, July 19, 2019

Standardization and quality management in next-generation sequencing

DNA sequencing continues to evolve quickly even after > 30 years. Many new platforms suddenly appeared and former established systems have vanished in almost the same manner. Since establishment of next-generation sequencing devices, this progress gains momentum due to the continually growing demand for higher throughput, lower costs and better quality of data. In consequence of this rapid development, standardized procedures and data formats as well as comprehensive quality management considerations are still scarce. Here, we listed and summarized current standardization efforts and quality management initiatives from companies, organizations and societies in form of published studies and ongoing projects. These…

Read More »

Sunday, July 7, 2019

Rapid and affordable size-selected PacBio single-molecule real-time sequencing template library construction using the bead-beating DNA extraction method

This study demonstrated that bead-beating method facilitates a simple and rapid protocol for genomic DNA isolation for Pacific BioSciences (PacBio) sequencing with library construction of sufficient length. The protocol may also be beneficial for inactivating pathogens by simultaneous and instant DNA fragmentation, with no special equipment required to obtain large DNA fragments. This protocol was comparable in terms of quality to the standard protocol suggested by PacBioand represents an alternative, rapid shortcut for performing accurate PacBio sequencing.

Read More »

Subscribe for blog updates:

Archives