Menu
April 21, 2020

Whole Genome Analysis of Lactobacillus plantarum Strains Isolated From Kimchi and Determination of Probiotic Properties to Treat Mucosal Infections by Candida albicans and Gardnerella vaginalis.

Three Lactobacillus plantarum strains ATG-K2, ATG-K6, and ATG-K8 were isolated from Kimchi, a Korean traditional fermented food, and their probiotic potentials were examined. All three strains were free of antibiotic resistance, hemolysis, and biogenic amine production and therefore assumed to be safe, as supported by whole genome analyses. These strains demonstrated several basic probiotic functions including a wide range of antibacterial activity, bile salt hydrolase activity, hydrogen peroxide production, and heat resistance at 70°C for 60 s. Further studies of antimicrobial activities against Candida albicans and Gardnerella vaginalis revealed growth inhibitory effects from culture supernatants, coaggregation effects, and killing effects of the three probiotic strains, with better efficacy toward C. albicans. In vitro treatment of bacterial lysates of the probiotic strains to the RAW264.7 murine macrophage cell line resulted in innate immunity enhancement via IL-6 and TNF-a production without lipopolysaccharide (LPS) treatment and anti-inflammatory effects via significantly increased production of IL-10 when co-treated with LPS. However, the degree of probiotic effect was different for each strain as the highest TNF-a and the lowest IL-10 production by the RAW264.7 cell were observed in the K8 lysate treated group compared to the K2 and K6 lysate treated groups, which may be related to genomic differences such as chromosome size (K2: 3,034,884 bp, K6: 3,205,672 bp, K8: 3,221,272 bp), plasmid numbers (K2: 3, K6 and K8: 1), or total gene numbers (K2: 3,114, K6: 3,178, K8: 3,186). Although more correlative inspections to connect genomic information and biological functions are needed, genomic analyses of the three strains revealed distinct genomic compositions of each strain. Also, this finding suggests genome level analysis may be required to accurately identify microorganisms. Nevertheless, L. plantarum ATG-K2, ATG-K6, and ATG-K8 demonstrated their potential as probiotics for mucosal health improvement in both microbial and immunological contexts.


April 21, 2020

Pandoravirus Celtis Illustrates the Microevolution Processes at Work in the Giant Pandoraviridae Genomes.

With genomes of up to 2.7 Mb propagated in µm-long oblong particles and initially predicted to encode more than 2000 proteins, members of the Pandoraviridae family display the most extreme features of the known viral world. The mere existence of such giant viruses raises fundamental questions about their origin and the processes governing their evolution. A previous analysis of six newly available isolates, independently confirmed by a study including three others, established that the Pandoraviridae pan-genome is open, meaning that each new strain exhibits protein-coding genes not previously identified in other family members. With an average increment of about 60 proteins, the gene repertoire shows no sign of reaching a limit and remains largely coding for proteins without recognizable homologs in other viruses or cells (ORFans). To explain these results, we proposed that most new protein-coding genes were created de novo, from pre-existing non-coding regions of the G+C rich pandoravirus genomes. The comparison of the gene content of a new isolate, pandoravirus celtis, closely related (96% identical genome) to the previously described p. quercus is now used to test this hypothesis by studying genomic changes in a microevolution range. Our results confirm that the differences between these two similar gene contents mostly consist of protein-coding genes without known homologs, with statistical signatures close to that of intergenic regions. These newborn proteins are under slight negative selection, perhaps to maintain stable folds and prevent protein aggregation pending the eventual emergence of fitness-increasing functions. Our study also unraveled several insertion events mediated by a transposase of the hAT family, 3 copies of which are found in p. celtis and are presumably active. Members of the Pandoraviridae are presently the first viruses known to encode this type of transposase.


April 21, 2020

Genomics-driven discovery of a biosynthetic gene cluster required for the synthesis of BII-Rafflesfungin from the fungus Phoma sp. F3723.

Phomafungin is a recently reported broad spectrum antifungal compound but its biosynthetic pathway is unknown. We combed publicly available Phoma genomes but failed to find any putative biosynthetic gene cluster that could account for its biosynthesis.Therefore, we sequenced the genome of one of our Phoma strains (F3723) previously identified as having antifungal activity in a high-throughput screen. We found a biosynthetic gene cluster that was predicted to synthesize a cyclic lipodepsipeptide that differs in the amino acid composition compared to Phomafungin. Antifungal activity guided isolation yielded a new compound, BII-Rafflesfungin, the structure of which was determined.We describe the NRPS-t1PKS cluster ‘BIIRfg’ compatible with the synthesis of the cyclic lipodepsipeptide BII-Rafflesfungin [HMHDA-L-Ala-L-Glu-L-Asn-L-Ser-L-Ser-D-Ser-D-allo-Thr-Gly]. We report new Stachelhaus codes for Ala, Glu, Asn, Ser, Thr, and Gly. We propose a mechanism for BII-Rafflesfungin biosynthesis, which involves the formation of the lipid part by BIIRfg_PKS followed by activation and transfer of the lipid chain by a predicted AMP-ligase on to the first PCP domain of the BIIRfg_NRPS gene.


April 21, 2020

Proteomic Analysis of Lactobacillus nagelii in the Presence of Saccharomyces cerevisiae Isolated From Water Kefir and Comparison With Lactobacillus hordei.

Water kefir is a slightly alcoholic and traditionally fermented beverage, which is prepared from sucrose, water, kefir grains, and dried or fresh fruits (e.g., figs). Lactobacillus (L.) nagelii, L. hordei, and Saccharomyces (S.) cerevisiae are predominant and stable lactic acid bacteria and yeasts, respectively, isolated from water kefir consortia. The growth of L. nagelii and L. hordei are improved in the presence of S. cerevisiae. In this work we demonstrate that quantitative comparative proteomics enables the investigation of interactions between LAB and yeast to predict real-time metabolic exchange in water kefir. It revealed 73 differentially expressed (DE) in L. nagelii TMW 1.1827 in the presence of S. cerevisiae. The presence of the yeast induced changes in the changes in the carbohydrate metabolism of L. nagelii and affected reactions involved in NAD+/NADH homeostasis. Furthermore, the DE enzymes involved in amino acid biosynthesis or catabolism predict that S. cerevisiae releases glutamine, histidine, methionine, and arginine, which are subsequently used by L. nagelii to ensure its survival in the water kefir consortium. In co-culture with S. cerevisiae, L. nagelii profits from riboflavin, most likely secreted by the yeast. The reaction of L. nagelii to the presence of S. cerevisiae differs from that one of the previously studied L. hordei, which displays 233 differentially expressed proteins, changes in citrate metabolism and an antidromic strategy for NAD+/NADH homeostasis. So far, aggregation promotion factors, i.e., formation of a specific glucan and bifunctional enzymes were only detected in L. hordei.


April 21, 2020

The transcriptome of Darwin’s bark spider silk glands predicts proteins contributing to dragline silk toughness.

Darwin’s bark spider (Caerostris darwini) produces giant orb webs from dragline silk that can be twice as tough as other silks, making it the toughest biological material. This extreme toughness comes from increased extensibility relative to other draglines. We show C. darwini dragline-producing major ampullate (MA) glands highly express a novel silk gene transcript (MaSp4) encoding a protein that diverges markedly from closely related proteins and contains abundant proline, known to confer silk extensibility, in a unique GPGPQ amino acid motif. This suggests C. darwini evolved distinct proteins that may have increased its dragline’s toughness, enabling giant webs. Caerostris darwini’s MA spinning ducts also appear unusually long, potentially facilitating alignment of silk proteins into extremely tough fibers. Thus, a suite of novel traits from the level of genes to spinning physiology to silk biomechanics are associated with the unique ecology of Darwin’s bark spider, presenting innovative designs for engineering biomaterials.


April 21, 2020

Full-length transcriptome sequencing and methyl jasmonate-induced expression profile analysis of genes related to patchoulol biosynthesis and regulation in Pogostemon cablin.

Pogostemon cablin (Blanco) Benth. (Patchouli) is an important aromatic and medicinal plant and widely used in traditional Chinese medicine as well as in the perfume industry. Patchoulol is the primary bioactive component in P. cablin, its biosynthesis has attracted widespread interests. Previous studies have surveyed the putative genes involved in patchoulol biosynthesis using next-generation sequencing method; however, technical limitations generated by short-read sequencing restrict the yield of full-length genes. Additionally, little is known about the expression pattern of genes especially patchoulol biosynthesis related genes in response to methyl jasmonate (MeJA). Our understanding of patchoulol biosynthetic pathway still remained largely incomplete to date.In this study, we analyzed the morphological character and volatile chemical compounds of P. cablin cv. ‘Zhanxiang’, and 39 volatile chemical components were detected in the patchouli leaf using GC-MS, most of which were sesquiterpenes. Furthermore, high-quality RNA isolated from leaves and stems of P. cablin were used to generate the first full-length transcriptome of P. cablin using PacBio isoform sequencing (Iso-Seq). In total, 9.7 Gb clean data and 82,335 full-length UniTransModels were captured. 102 transcripts were annotated as 16 encoding enzymes involved in patchouli alcohol biosynthesis. Accorded with the uptrend of patchoulol content, the vast majority of genes related to the patchoulol biosynthesis were up-regulated after MeJA treatment, indicating that MeJA led to an increasing synthesis of patchoulol through activating the expression level of genes involved in biosynthesis pathway of patchoulol. Moreover, expression pattern analysis also revealed that transcription factors participated in JA regulation of patchoulol biosynthesis were differentially expressed.The current study comprehensively reported the morphological specificity, volatile chemical compositions and transcriptome characterization of the Chinese-cultivated P. cablin cv. ‘Zhanxiang’, these results contribute to our better understanding of the physiological and molecular features of patchouli, especially the molecular mechanism of biosynthesis of patchoulol. Our full-length transcriptome data also provides a valuable genetic resource for further studies in patchouli.


April 21, 2020

Large Plasmid Complement Resolved: Complete Genome Sequencing of Lactobacillus plantarum MF1298, a Candidate Probiotic Strain Associated with Unfavorable Effect.

Considerable attention has been given to the species Lactobacillus plantarum regarding its probiotic potential. L. plantarum strains have shown health benefits in several studies, and even nonstrain-specific claims are allowed in certain markets. L. plantarum strain MF1298 was considered a candidate probiotic, demonstrating in vitro probiotic properties and the ability to survive passage through the human intestinal tract. However, the strain showed an unfavorable effect on symptoms in subjects with irritable bowel syndrome in a clinical trial. The properties and the genome of this strain are thus of general interest. Obtaining the complete genome of strain MF1298 proved difficult due to its large plasmid complement. Here, we exploit a combination of sequencing approaches to obtain the complete chromosome and plasmid assemblies of MF1298. The Oxford Nanopore Technologies MinION long-read sequencer was particularly useful in resolving the unusually large number of plasmids in the strain, 14 in total. The complete genome sequence of 3,576,440 basepairs contains 3272 protein-encoding genes, of which 315 are located on plasmids. Few unique regions were found in comparison with other L. plantarum genomes. Notably, however, one of the plasmids contains genes related to vitamin B12 (cobalamin) turnover and genes encoding bacterial reverse transcriptases, features not previously reported for L. plantarum. The extensive plasmid information will be important for future studies with this strain.


April 21, 2020

Anaerobic Degradation of Sulfated Polysaccharides by Two Novel Kiritimatiellales Strains Isolated From Black Sea Sediment.

The marine environment contains a large diversity of sulfated polysaccharides and other glycopolymers. Saccharolytic microorganisms degrade these compounds through hydrolysis, which includes the hydrolysis of sulfate groups from sugars by sulfatases. Various marine bacteria of the Planctomycetes-Verrucomicrobia-Chlamydia (PVC) superphylum have exceptionally high numbers of sulfatase genes associated with the degradation of sulfated polysaccharides. However, thus far no sulfatase-rich marine anaerobes are known. In this study, we aimed to isolate marine anaerobes using sulfated polysaccharides as substrate. Anoxic enrichment cultures were set up with a mineral brackish marine medium, inoculated with anoxic Black Sea sediment sampled at 2,100 m water depth water and incubated at 15°C (in situ T = 8°C) for several weeks. Community analysis by 16S rRNA gene amplicon sequencing revealed the enrichment of Kiritimatiellaeota clade R76-B128 bacteria in the enrichments with the sulfated polysaccharides fucoidan and iota-carrageenan as substrate. We isolated two strains, F1 and F21, which represent a novel family within the order of the Kiritimatiellales. They were capable of growth on various mono-, di-, and polysaccharides, including fucoidan. The desulfation of iota-carrageenan by strain F21 was confirmed quantitatively by an increase in free sulfate concentration. Strains F1 and F21 represent the first marine sulfatase-rich anaerobes, encoding more sulfatases (521 and 480, 8.0 and 8.4% of all coding sequences, respectively) than any other microorganism currently known. Specific encoded sulfatase subfamilies could be involved in desulfating fucoidan (S1_15, S1_17 and S1_25) and iota-carrageenan (S1_19). Strains F1 and F21 had a sulfatase gene classification profile more similar to aerobic than anaerobic sulfatase-rich PVC bacteria, including Kiritimatiella glycovorans, the only other cultured representative within the Kiritimatiellaeota. Both strains encoded a single anaerobic sulfatase-maturating enzyme which could be responsible for post-translational modification of formylglycine-dependent sulfatases. Strains F1 and F21 are potential anaerobic platforms for future studies on sulfatases and their maturation enzymes.


April 21, 2020

Genome assembly of Nannochloropsis oceanica provides evidence of host nucleus overthrow by the symbiont nucleus during speciation.

The species of the genus Nannochloropsis are unique in their maintenance of a nucleus-plastid continuum throughout their cell cycle, non-motility and asexual reproduction. These characteristics should have been endorsed in their gene assemblages (genomes). Here we show that N. oceanica has a genome of 29.3?Mb consisting of 32 pseudochromosomes and containing 7,330 protein-coding genes; and the host nucleus may have been overthrown by an ancient red alga symbiont nucleus during speciation through secondary endosymbiosis. In addition, N. oceanica has lost its flagella and abilities to undergo meiosis and sexual reproduction, and adopted a genome reduction strategy during speciation. We propose that N. oceanica emerged through the active fusion of a host protist and a photosynthesizing ancient red alga and the symbiont nucleus became dominant over the host nucleus while the chloroplast was wrapped by two layers of endoplasmic reticulum. Our findings evidenced an alternative speciation pathway of eukaryotes.


April 21, 2020

Iso-Seq analysis of the Taxus cuspidata transcriptome reveals the complexity of Taxol biosynthesis.

Taxus cuspidata is well known worldwide for its ability to produce Taxol, one of the top-selling natural anticancer drugs. However, current Taxol production cannot match the increasing needs of the market, and novel strategies should be considered to increase the supply of Taxol. Since the biosynthetic mechanism of Taxol remains largely unknown, elucidating this pathway in detail will be very helpful in exploring alternative methods for Taxol production.Here, we sequenced Taxus cuspidata transcriptomes with next-generation sequencing (NGS) and third-generation sequencing (TGS) platforms. After correction with Illumina reads and removal of redundant reads, more than 180,000 nonredundant transcripts were generated from the raw Iso-Seq data. Using Cogent software and an alignment-based method, we identified a total of 139 cytochrome P450s (CYP450s), 31 BAHD acyltransferases (ACTs) and 1940 transcription factors (TFs). Based on phylogenetic and coexpression analysis, we identified 9 CYP450s and 7 BAHD ACTs as potential lead candidates for Taxol biosynthesis and 6 TFs that are possibly involved in the regulation of this process. Using coexpression analysis of genes known to be involved in Taxol biosynthesis, we elucidated the stem biosynthetic pathway. In addition, we analyzed the expression patterns of 12 characterized genes in the Taxol pathway and speculated that the isoprene precursors for Taxol biosynthesis were mainly synthesized via the MEP pathway. In addition, we found and confirmed that the alternative splicing patterns of some genes varied in different tissues, which may be an important tissue-specific method of posttranscriptional regulation.A strategy was developed to generate corrected full-length or nearly full-length transcripts without assembly to ensure sequence accuracy, thus greatly improving the reliability of coexpression and phylogenetic analysis and greatly facilitating gene cloning and characterization. This strategy was successfully utilized to elucidate the Taxol biosynthetic pathway, which will greatly contribute to the goals of improving the Taxol content in Taxus spp. using molecular breeding or plant management strategies and synthesizing Taxol in microorganisms using synthetic biological technology.


April 21, 2020

Genome and proteome of the chlorophyll f-producing cyanobacterium Halomicronema hongdechloris: adaptative proteomic shifts under different light conditions.

Halomicronema hongdechloris was the first cyanobacterium to be identified that produces chlorophyll (Chl) f. It contains Chl a and uses phycobiliproteins as its major light-harvesting components under white light conditions. However, under far-red light conditions H. hongdechloris produces Chl f and red-shifted phycobiliprotein complexes to absorb and use far-red light. In this study, we report the genomic sequence of H. hongdechloris and use quantitative proteomic approaches to confirm the deduced metabolic pathways as well as metabolic and photosynthetic changes in response to different photo-autotrophic conditions.The whole genome of H. hongdechloris was sequenced using three different technologies and assembled into a single circular scaffold with a genome size of 5,577,845?bp. The assembled genome has 54.6% GC content and encodes 5273 proteins covering 83.5% of the DNA sequence. Using Tandem Mass Tag labelling, the total proteome of H. hongdechloris grown under different light conditions was analyzed. A total of 1816 proteins were identified, with photosynthetic proteins accounting for 24% of the total mass spectral readings, of which 35% are phycobiliproteins. The proteomic data showed that essential cellular metabolic reactions remain unchanged under shifted light conditions. The largest differences in protein content between white and far-red light conditions reflect the changes to photosynthetic complexes, shifting from a standard phycobilisome and Chl a-based light harvesting system under white light, to modified, red-shifted phycobilisomes and Chl f-containing photosystems under far-red light conditions.We demonstrate that essential cellular metabolic reactions under different light conditions remain constant, including most of the enzymes in chlorophyll biosynthesis and photosynthetic carbon fixation. The changed light conditions cause significant changes in the make-up of photosynthetic protein complexes to improve photosynthetic light capture and reaction efficiencies. The integration of the global proteome with the genome sequence highlights that cyanobacterial adaptation strategies are focused on optimizing light capture and utilization, with minimal changes in other metabolic pathways. Our quantitative proteomic approach has enabled a deeper understanding of both the stability and the flexibility of cellular metabolic networks of H. hongdechloris in response to changes in its environment.


April 21, 2020

Genome of lethal Lepiota venenata and insights into the evolution of toxin-biosynthetic genes.

Genomes of lethal Amanita and Galerina mushrooms have gradually become available in the past ten years; in contrast the other known amanitin-producing genus, Lepiota, is still vacant in this aspect. A fatal mushroom poisoning case in China has led to acquisition of fresh L. venenata fruiting bodies, based on which a draft genome was obtained through PacBio and Illumina sequencing platforms. Toxin-biosynthetic MSDIN family and Porlyl oligopeptidase B (POPB) genes were mined from the genome and used for phylogenetic and statistical studies to gain insights into the evolution of the biosynthetic pathway.The analysis of the genome data illustrated that only one MSDIN, named LvAMA1, exits in the genome, along with a POPB gene. No POPA homolog was identified by direct homology searching, however, one additional POP gene, named LvPOPC, was cloned and the gene structure determined. Similar to ApAMA1 in A. phalloides and GmAMA1 in G. marginata, LvAMA1 directly encodes a-amanitin. The two toxin genes were mapped to the draft genome, and the structures analyzed. Furthermore, phylogenetic and statistical analyses were conducted to study the evolution history of the POPB genes. Compared to our previous report, the phylogenetic trees unambiguously showed that a monophyletic POPB lineage clearly conflicted with the species phylogeny. In contrast, phylogeny of POPA genes resembled the species phylogeny. Topology and divergence tests showed that the POPB lineage was robust and these genes exhibited significantly shorter genetic distances than those of the house-keeping rbp2, a characteristic feature of genes with horizontal gene transfer (HGT) background. Consistently, same scenario applied to the only MSDIN, LvAMA1, in the genome.To the best of our knowledge, this is the first reported genome of Lepiota. The analyses of the toxin genes indicate that the cyclic peptides are synthesized through a ribosomal mechanism. The toxin genes, LvAMA1 and LvPOPB, are not in the vicinity of each other. Phylogenetic and evolutionary studies suggest that HGT is the underlining cause for the occurrence of POPB and MSDIN in Amanita, Galerina and Lepiota, which are allocated in three distantly-related families.


April 21, 2020

A First Study of the Virulence Potential of a Bacillus subtilis Isolate From Deep-Sea Hydrothermal Vent.

Bacillus subtilis is the best studied Gram-positive bacterium, primarily as a model of cell differentiation and industrial exploitation. To date, little is known about the virulence of B. subtilis. In this study, we examined the virulence potential of a B. subtilis strain (G7) isolated from the Iheya North hydrothermal field of Okinawa Trough. G7 is aerobic, motile, endospore-forming, and requires NaCl for growth. The genome of G7 is composed of one circular chromosome of 4,216,133 base pairs with an average GC content of 43.72%. G7 contains 4,416 coding genes, 27.5% of which could not be annotated, and the remaining 72.5% were annotated with known or predicted functions in 25 different COG categories. Ten sets of 23S, 5S, and 16S ribosomal RNA operons, 86 tRNA and 14 sRNA genes, 50 tandem repeats, 41 mini-satellites, one microsatellite, and 42 transposons were identified in G7. Comparing to the genome of the B. subtilis wild type strain NCIB 3610T, G7 genome contains many genomic translocations, inversions, and insertions, and twice the amount of genomic Islands (GIs), with 42.5% of GI genes encoding hypothetical proteins. G7 possesses abundant putative virulence genes associated with adhesion, invasion, dissemination, anti-phagocytosis, and intracellular survival. Experimental studies showed that G7 was able to cause mortality in fish and mice following intramuscular/intraperitoneal injection, resist the killing effect of serum complement, and replicate in mouse macrophages and fish peripheral blood leukocytes. Taken together, our study indicates that G7 is a B. subtilis isolate with unique genetic features and can be lethal to vertebrate animals once being introduced into the animals by artificial means. These results provide the first insight into the potential harmfulness of deep-sea B. subtilis.


April 21, 2020

Complete genome sequence of a marine-sediment-derived bacterial strain Bacillus velezensis SH-B74, a cyclic lipopeptides producer and a biopesticide.

A marine-sediment sample-derived strain Bacillus velezensis SH-B74 has the capacity to produce cyclic lipopeptides (CLPs), and these CLPs secreted by the strain show biological activities against various pests under both in vitro and in planta conditions, such evidence has supported that the strain SH-B74 is a biopesticide. To get a better insight into the mechanisms on the control of the pesticides by the strain, a genome sequencing project has been applied to the genomic DNA of the strain SH-B74. The results show that the strain SH-B74 has a chromosome size of 4,042,190 bp, with a GC content of 46.5%, in addition, the strain contains a 61,634 bp plasmid pSH-B74, with a GC content of 40.8%. Data from bioinformatic analysis reveal that the strain SH-B74 has genes with the capacity to increase environmental adaptation, promote the rhizosphere fitnesses and secrete a spectrum of antibiotics, including nonribosomal peptide synthetases (NRPSs)-derived CLPs bacillopeptin, plipastatin, and surfactin. The presence of CLPs in the bacterial cultures of the strain SH-B74 was confirmed further by LC-MS analysis. Thus, genome sequencing and analyses together with chemical analysis reveal the promising perspectives of the strain SH-B74 that are of spectacular importance to its trait as a plant beneficial microbe to be used in agriculture practices.


April 21, 2020

Long-read based de novo assembly of low-complexity metagenome samples results in finished genomes and reveals insights into strain diversity and an active phage system.

Complete and contiguous genome assemblies greatly improve the quality of subsequent systems-wide functional profiling studies and the ability to gain novel biological insights. While a de novo genome assembly of an isolated bacterial strain is in most cases straightforward, more informative data about co-existing bacteria as well as synergistic and antagonistic effects can be obtained from a direct analysis of microbial communities. However, the complexity of metagenomic samples represents a major challenge. While third generation sequencing technologies have been suggested to enable finished metagenome-assembled genomes, to our knowledge, the complete genome assembly of all dominant strains in a microbiome sample has not been demonstrated. Natural whey starter cultures (NWCs) are used in cheese production and represent low-complexity microbiomes. Previous studies of Swiss Gruyère and selected Italian hard cheeses, mostly based on amplicon metagenomics, concurred that three species generally pre-dominate: Streptococcus thermophilus, Lactobacillus helveticus and Lactobacillus delbrueckii.Two NWCs from Swiss Gruyère producers were subjected to whole metagenome shotgun sequencing using the Pacific Biosciences Sequel and Illumina MiSeq platforms. In addition, longer Oxford Nanopore Technologies MinION reads had to be generated for one to resolve repeat regions. Thereby, we achieved the complete assembly of all dominant bacterial genomes from these low-complexity NWCs, which was corroborated by a 16S rRNA amplicon survey. Moreover, two distinct L. helveticus strains were successfully co-assembled from the same sample. Besides bacterial chromosomes, we could also assemble several bacterial plasmids and phages and a corresponding prophage. Biologically relevant insights were uncovered by linking the plasmids and phages to their respective host genomes using DNA methylation motifs on the plasmids and by matching prokaryotic CRISPR spacers with the corresponding protospacers on the phages. These results could only be achieved by employing long-read sequencing data able to span intragenomic as well as intergenomic repeats.Here, we demonstrate the feasibility of complete de novo genome assembly of all dominant strains from low-complexity NWCs based on whole metagenomics shotgun sequencing data. This allowed to gain novel biological insights and is a fundamental basis for subsequent systems-wide omics analyses, functional profiling and phenotype to genotype analysis of specific microbial communities.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.