Menu
July 7, 2019

Complete genome sequence of Lactobacillus casei LC5, a potential probiotics for atopic dermatitis.

Probiotics are living microorganisms providing health beneficial effect to the host (1). Probiotics have been used for the treatment or prevention of various diseases related to diarrhea (2), cho- lesterol (3) immune function (4), and inflammatory bowel disease (5). In addition, recent study also presents that probiotic bacteria in the Bifidobacterium and Lactobacillus genera are able to have therapeutic effects in the patients of psychological disorders, such as depression, anxiety, and memory (6).


July 7, 2019

MHC class I diversity in chimpanzees and bonobos.

Major histocompatibility complex (MHC) class I genes are critically involved in the defense against intracellular pathogens. MHC diversity comparisons among samples of closely related taxa may reveal traces of past or ongoing selective processes. The bonobo and chimpanzee are the closest living evolutionary relatives of humans and last shared a common ancestor some 1 mya. However, little is known concerning MHC class I diversity in bonobos or in central chimpanzees, the most numerous and genetically diverse chimpanzee subspecies. Here, we used a long-read sequencing technology (PacBio) to sequence the classical MHC class I genes A, B, C, and A-like in 20 and 30 wild-born bonobos and chimpanzees, respectively, with a main focus on central chimpanzees to assess and compare diversity in those two species. We describe in total 21 and 42 novel coding region sequences for the two species, respectively. In addition, we found evidence for a reduced MHC class I diversity in bonobos as compared to central chimpanzees as well as to western chimpanzees and humans. The reduced bonobo MHC class I diversity may be the result of a selective process in their evolutionary past since their split from chimpanzees.


July 7, 2019

Complete genome sequence of a Legionella longbeachae serogroup 1 strain isolated from a patient with Legionnaires’ disease.

Legionella longbeachae serogroup 1, predominantly found in soil and composted plant material, causes the majority of cases of Legionnaires’ disease (LD) in New Zealand. Here, we report the complete genome sequence of an L. longbeachae serogroup 1 (sg1) isolate derived from a patient hospitalized with LD in Christchurch, New Zealand. Copyright © 2017 Slow et al.


July 7, 2019

The MHC locus and genetic susceptibility to autoimmune and infectious diseases.

In the past 50 years, variants in the major histocompatibility complex (MHC) locus, also known as the human leukocyte antigen (HLA), have been reported as major risk factors for complex diseases. Recent advances, including large genetic screens, imputation, and analyses of non-additive and epistatic effects, have contributed to a better understanding of the shared and specific roles of MHC variants in different diseases. We review these advances and discuss the relationships between MHC variants involved in autoimmune and infectious diseases. Further work in this area will help to distinguish between alternative hypotheses for the role of pathogens in autoimmune disease development.


July 7, 2019

The evolution of the natural killer complex; a comparison between mammals using new high-quality genome assemblies and targeted annotation.

Natural killer (NK) cells are a diverse population of lymphocytes with a range of biological roles including essential immune functions. NK cell diversity is in part created by the differential expression of cell surface receptors which modulate activation and function, including multiple subfamilies of C-type lectin receptors encoded within the NK complex (NKC). Little is known about the gene content of the NKC beyond rodent and primate lineages, other than it appears to be extremely variable between mammalian groups. We compared the NKC structure between mammalian species using new high-quality draft genome assemblies for cattle and goat; re-annotated sheep, pig, and horse genome assemblies; and the published human, rat, and mouse lemur NKC. The major NKC genes are largely in the equivalent positions in all eight species, with significant independent expansions and deletions between species, allowing us to propose a model for NKC evolution during mammalian radiation. The ruminant species, cattle and goats, have independently evolved a second KLRC locus flanked by KLRA and KLRJ, and a novel KLRH-like gene has acquired an activating tail. This novel gene has duplicated several times within cattle, while other activating receptor genes have been selectively disrupted. Targeted genome enrichment in cattle identified varying levels of allelic polymorphism between the NKC genes concentrated in the predicted extracellular ligand-binding domains. This novel recombination and allelic polymorphism is consistent with NKC evolution under balancing selection, suggesting that this diversity influences individual immune responses and may impact on differential outcomes of pathogen infection and vaccination.


July 7, 2019

Two orangutan species have evolved different KIR alleles and haplotypes.

The immune and reproductive functions of human NK cells are regulated by interactions of the C1 and C2 epitopes of HLA-C with C1-specific and C2-specific lineage III killer cell Ig-like receptors (KIR). This rapidly evolving and diverse system of ligands and receptors is restricted to humans and great apes. In this context, the orangutan has particular relevance because it represents an evolutionary intermediate, one having the C1 epitope and corresponding KIR but lacking the C2 epitope. Through a combination of direct sequencing, KIR genotyping, and data mining from the Great Ape Genome Project, we characterized the KIR alleles and haplotypes for panels of 10 Bornean orangutans and 19 Sumatran orangutans. The orangutan KIR haplotypes have between 5 and 10 KIR genes. The seven orangutan lineage III KIR genes all locate to the centromeric region of the KIR locus, whereas their human counterparts also populate the telomeric region. One lineage III KIR gene is Bornean specific, one is Sumatran specific, and five are shared. Of 12 KIR gene-content haplotypes, 5 are Bornean specific, 5 are Sumatran specific, and 2 are shared. The haplotypes have different combinations of genes encoding activating and inhibitory C1 receptors that can be of higher or lower affinity. All haplotypes encode an inhibitory C1 receptor, but only some haplotypes encode an activating C1 receptor. Of 130 KIR alleles, 55 are Bornean specific, 65 are Sumatran specific, and 10 are shared. Copyright © 2017 by The American Association of Immunologists, Inc.


July 7, 2019

Assembly and characterization of the MHC class I region of the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis).

The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis; YFP) is the sole freshwater subspecies of N. asiaeorientalis and is now critically endangered. Major histocompatibility complex (MHC) is a family of highly polymorphic genes that play an important immunological role in antigen presentation in the vertebrates. Currently, however, little is known about MHC region in the genome of the YFP, which hampers conservation genetics and evolutionary ecology study using MHC genes. In this work, a nucleotide sequence of 774,811 bp covering the YFP MHC class I region was obtained by screening a YFP bacterial artificial chromosome (BAC) library, followed by sequencing and assembly of positive BAC clones. A total of 45 genes were successfully annotated, of which four were MHC class I genes. There are high similarities among the four YFP MHC class I genes (>94 %). Divergence in the coding region of the four YFP MHC class I genes is mainly localized to exons 2 and 3, which encode the antigen-binding sites of MHC class I genes. Additionally, comparison of the MHC structure in YFP to those of cattle, sheep, and pig showed that MHC class I genes are located in genome regions with regard to the conserved genes, and the YFP contains the fewest MHC class I genes among these species. This is the first report characterizing a cetacean MHC class I region and describing its organization, which would be valuable for further investigation of adaptation in natural populations of the YFP and other cetaceans.


July 7, 2019

Refinement of the canine CD1 locus topology and investigation of antibody binding to recombinant canine CD1 isoforms.

CD1 molecules are antigen-presenting glycoproteins primarily found on dendritic cells (DCs) responsible for lipid antigen presentation to CD1-restricted T cells. Despite their pivotal role in immunity, little is known about CD1 protein expression in dogs, notably due to lack of isoform-specific antibodies. The canine (Canis familiaris) CD1 locus was previously found to contain three functional CD1A genes: canCD1A2, canCD1A6, and canCD1A8, where two variants of canCD1A8, canCD1A8.1 and canCD1A8.2, were assumed to be allelic variants. However, we hypothesized that these rather represented two separate genes. Sequencing of three overlapping bacterial artificial chromosomes (BACs) spanning the entire canine CD1 locus revealed canCD1A8.2 and canCD1A8.1 to be located in tandem between canCD1A7 and canCD1C, and canCD1A8.1 was consequently renamed canCD1A9. Green fluorescent protein (GFP)-fused canine CD1 transcripts were recombinantly expressed in 293T cells. All proteins showed a highly positive GFP expression except for canine CD1d and a splice variant of canine CD1a8 lacking exon 3. Probing with a panel of anti-CD1 monoclonal antibodies (mAbs) showed that Ca13.9H11 and Ca9.AG5 only recognized canine CD1a8 and CD1a9 isoforms, and Fe1.5F4 mAb solely recognized canine CD1a6. Anti-CD1b mAbs recognized the canine CD1b protein, but also bound CD1a2, CD1a8, and CD1a9. Interestingly, Ca9.AG5 showed allele specificity based on a single nucleotide polymorphism (SNP) located at position 321. Our findings have refined the structure of the canine CD1 locus and available antibody specificity against canine CD1 proteins. These are important fundamentals for future investigation of the role of canine CD1 in lipid immunity.


July 7, 2019

Multiple and diverse vsp and vlp sequences in Borrelia miyamotoi, a hard tick-borne zoonotic pathogen.

Based on chromosome sequences, the human pathogen Borrelia miyamotoi phylogenetically clusters with species that cause relapsing fever. But atypically for relapsing fever agents, B. miyamotoi is transmitted not by soft ticks but by hard ticks, which also are vectors of Lyme disease Borrelia species. To further assess the relationships of B. miyamotoi to species that cause relapsing fever, I investigated extrachromosomal sequences of a North American strain with specific attention on plasmid-borne vsp and vlp genes, which are the underpinnings of antigenic variation during relapsing fever. For a hybrid approach to achieve assemblies that spanned more than one of the paralogous vsp and vlp genes, a database of short-reads from next-generation sequencing was supplemented with long-reads obtained with real-time DNA sequencing from single polymerase molecules. This yielded three contigs of 31, 16, and 11 kb, which each contained multiple and diverse sequences that were homologous to vsp and vlp genes of the relapsing fever agent B. hermsii. Two plasmid fragments had coding sequences for plasmid partition proteins that differed from each other from paralogous proteins for the megaplasmid and a small plasmid of B. miyamotoi. One of 4 vsp genes, vsp1, was present at two loci, one of which was downstream of a candiate prokaryotic promoter. A limited RNA-seq analysis of a population growing in the blood of mice indicated that of the 4 different vsp genes vsp1 was the one that was expressed. The findings indicate that B. miyamotoi has at least four types of plasmids, two or more of which bear vsp and vlp gene sequences that are as numerous and diverse as those of relapsing fever Borrelia. The database and insights from these findings provide a foundation for further investigations of the immune responses to this pathogen and of the capability of B. miyamotoi for antigenic variation.


July 7, 2019

Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts.

Pneumocystis jirovecii is a major cause of life-threatening pneumonia in immunosuppressed patients including transplant recipients and those with HIV/AIDS, yet surprisingly little is known about the biology of this fungal pathogen. Here we report near complete genome assemblies for three Pneumocystis species that infect humans, rats and mice. Pneumocystis genomes are highly compact relative to other fungi, with substantial reductions of ribosomal RNA genes, transporters, transcription factors and many metabolic pathways, but contain expansions of surface proteins, especially a unique and complex surface glycoprotein superfamily, as well as proteases and RNA processing proteins. Unexpectedly, the key fungal cell wall components chitin and outer chain N-mannans are absent, based on genome content and experimental validation. Our findings suggest that Pneumocystis has developed unique mechanisms of adaptation to life exclusively in mammalian hosts, including dependence on the lungs for gas and nutrients and highly efficient strategies to escape both host innate and acquired immune defenses.


July 7, 2019

Evolutionary redesign of the Atlantic cod (Gadus morhua L.) Toll-like receptor repertoire by gene losses and expansions.

Genome sequencing of the teleost Atlantic cod demonstrated loss of the Major Histocompatibility Complex (MHC) class II, an extreme gene expansion of MHC class I and gene expansions and losses in the innate pattern recognition receptor (PRR) family of Toll-like receptors (TLR). In a comparative genomic setting, using an improved version of the genome, we characterize PRRs in Atlantic cod with emphasis on TLRs demonstrating the loss of TLR1/6, TLR2 and TLR5 and expansion of TLR7, TLR8, TLR9, TLR22 and TLR25. We find that Atlantic cod TLR expansions are strongly influenced by diversifying selection likely to increase the detectable ligand repertoire through neo- and subfunctionalization. Using RNAseq we find that Atlantic cod TLRs display likely tissue or developmental stage-specific expression patterns. In a broader perspective, a comprehensive vertebrate TLR phylogeny reveals that the Atlantic cod TLR repertoire is extreme with regards to losses and expansions compared to other teleosts. In addition we identify a substantial shift in TLR repertoires following the evolutionary transition from an aquatic vertebrate (fish) to a terrestrial (tetrapod) life style. Collectively, our findings provide new insight into the function and evolution of TLRs in Atlantic cod as well as the evolutionary history of vertebrate innate immunity.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.