Menu
September 22, 2019  |  

KIR3DL01 upregulation on gut natural killer cells in response to SIV infection of KIR- and MHC class I-defined rhesus macaques.

Natural killer cells provide an important early defense against viral pathogens and are regulated in part by interactions between highly polymorphic killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their MHC class I ligands on target cells. We previously identified MHC class I ligands for two rhesus macaque KIRs: KIR3DL01 recognizes Mamu-Bw4 molecules and KIR3DL05 recognizes Mamu-A1*002. To determine how these interactions influence NK cell responses, we infected KIR3DL01+ and KIR3DL05+ macaques with and without defined ligands for these receptors with SIVmac239, and monitored NK cell responses in peripheral blood and lymphoid tissues. NK cell responses in blood were broadly stimulated, as indicated by rapid increases in the CD16+ population during acute infection and sustained increases in the CD16+ and CD16-CD56- populations during chronic infection. Markers of proliferation (Ki-67), activation (CD69 & HLA-DR) and antiviral activity (CD107a & TNFa) were also widely expressed, but began to diverge during chronic infection, as reflected by sustained CD107a and TNFa upregulation by KIR3DL01+, but not by KIR3DL05+ NK cells. Significant increases in the frequency of KIR3DL01+ (but not KIR3DL05+) NK cells were also observed in tissues, particularly in the gut-associated lymphoid tissues, where this receptor was preferentially upregulated on CD56+ and CD16-CD56- subsets. These results reveal broad NK cell activation and dynamic changes in the phenotypic properties of NK cells in response to SIV infection, including the enrichment of KIR3DL01+ NK cells in tissues that support high levels of virus replication.


July 19, 2019  |  

Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes.

Detection of somatic mutations in human leukocyte antigen (HLA) genes using whole-exome sequencing (WES) is hampered by the high polymorphism of the HLA loci, which prevents alignment of sequencing reads to the human reference genome. We describe a computational pipeline that enables accurate inference of germline alleles of class I HLA-A, B and C genes and subsequent detection of mutations in these genes using the inferred alleles as a reference. Analysis of WES data from 7,930 pairs of tumor and healthy tissue from the same patient revealed 298 nonsilent HLA mutations in tumors from 266 patients. These 298 mutations are enriched for likely functional mutations, including putative loss-of-function events. Recurrence of mutations suggested that these ‘hotspot’ sites were positively selected. Cancers with recurrent somatic HLA mutations were associated with upregulation of signatures of cytolytic activity characteristic of tumor infiltration by effector lymphocytes, supporting immune evasion by altered HLA function as a contributory mechanism in cancer.


July 19, 2019  |  

Emergence of ebola virus escape variants in infected nonhuman primates treated with the MB-003 antibody cocktail.

MB-003, a plant-derived monoclonal antibody cocktail used effectively in treatment of Ebola virus infection in non-human primates, was unable to protect two of six animals when initiated 1 or 2 days post-infection. We characterized a mechanism of viral escape in one of the animals, after observation of two clusters of genomic mutations that resulted in five nonsynonymous mutations in the monoclonal antibody target sites. These mutations were linked to a reduction in antibody binding and later confirmed to be present in a viral isolate that was not neutralized in vitro. Retrospective evaluation of a second independent study allowed the identification of a similar case. Four SNPs in previously identified positions were found in this second fatality, suggesting that genetic drift could be a potential cause for treatment failure. These findings highlight the importance selecting different target domains for each component of the cocktail to minimize the potential for viral escape. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.


July 19, 2019  |  

Towards better precision medicine: PacBio single-molecule long reads resolve the interpretation of HIV drug resistant mutation profiles at explicit quasispecies (haplotype) level.

Development of HIV-1 drug resistance mutations (HDRMs) is one of the major reasons for the clinical failure of antiretroviral therapy. Treatment success rates can be improved by applying personalized anti-HIV regimens based on a patient’s HDRM profile. However, the sensitivity and specificity of the HDRM profile is limited by the methods used for detection. Sanger-based sequencing technology has traditionally been used for determining HDRM profiles at the single nucleotide variant (SNV) level, but with a sensitivity of only = 20% in the HIV population of a patient. Next Generation Sequencing (NGS) technologies offer greater detection sensitivity (~ 1%) and larger scope (hundreds of samples per run). However, NGS technologies produce reads that are too short to enable the detection of the physical linkages of individual SNVs across the haplotype of each HIV strain present. In this article, we demonstrate that the single-molecule long reads generated using the Third Generation Sequencer (TGS), PacBio RS II, along with the appropriate bioinformatics analysis method, can resolve the HDRM profile at a more advanced quasispecies level. The case studies on patients’ HIV samples showed that the quasispecies view produced using the PacBio method offered greater detection sensitivity and was more comprehensive for understanding HDRM situations, which is complement to both Sanger and NGS technologies. In conclusion, the PacBio method, providing a promising new quasispecies level of HDRM profiling, may effect an important change in the field of HIV drug resistance research.


July 19, 2019  |  

Comprehensive mutagenesis of the fimS promoter regulatory switch reveals novel regulation of type 1 pili in uropathogenic Escherichia coli.

Type 1 pili (T1P) are major virulence factors for uropathogenic Escherichia coli (UPEC), which cause both acute and recurrent urinary tract infections. T1P expression therefore is of direct relevance for disease. T1P are phase variable (both piliated and nonpiliated bacteria exist in a clonal population) and are controlled by an invertible DNA switch (fimS), which contains the promoter for the fim operon encoding T1P. Inversion of fimS is stochastic but may be biased by environmental conditions and other signals that ultimately converge at fimS itself. Previous studies of fimS sequences important for T1P phase variation have focused on laboratory-adapted E. coli strains and have been limited in the number of mutations or by alteration of the fimS genomic context. We surmounted these limitations by using saturating genomic mutagenesis of fimS coupled with accurate sequencing to detect both mutations and phase status simultaneously. In addition to the sequences known to be important for biasing fimS inversion, our method also identifies a previously unknown pair of 5′ UTR inverted repeats that act by altering the relative fimA levels to control phase variation. Thus we have uncovered an additional layer of T1P regulation potentially impacting virulence and the coordinate expression of multiple pilus systems.


July 19, 2019  |  

Short tandem repeats, segmental duplications, gene deletion, and genomic instability in a rapidly diversified immune gene family.

Genomic regions with repetitive sequences are considered unstable and prone to swift DNA diversification processes. A highly diverse immune gene family of the sea urchin (Strongylocentrotus purpuratus), called Sp185/333, is composed of clustered genes with similar sequence as well as several types of repeats ranging in size from short tandem repeats (STRs) to large segmental duplications. This repetitive structure may have been the basis for the incorrect assembly of this gene family in the sea urchin genome sequence. Consequently, we have resolved the structure of the family and profiled the members by sequencing selected BAC clones using Illumina and PacBio approaches.BAC insert assemblies identified 15 predicted genes that are organized into three clusters. Two of the gene clusters have almost identical flanking regions, suggesting that they may be non-matching allelic clusters residing at the same genomic locus. GA STRs surround all genes and appear in large stretches at locations of putatively deleted genes. GAT STRs are positioned at the edges of segmental duplications that include a subset of the genes. The unique locations of the STRs suggest their involvement in gene deletions and segmental duplications. Genomic profiling of the Sp185/333 gene diversity in 10 sea urchins shows that no gene repertoires are shared among individuals indicating a very high gene diversification rate for this family.The repetitive genomic structure of the Sp185/333 family that includes STRs in strategic locations may serve as platform for a controlled mechanism which regulates the processes of gene recombination, gene conversion, duplication and deletion. The outcome is genomic instability and allelic mismatches, which may further drive the swift diversification of the Sp185/333 gene family that may improve the immune fitness of the species.


July 7, 2019  |  

Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations.

Despite antiretroviral therapy (ART), human immunodeficiency virus (HIV)-1 persists in a stable latent reservoir, primarily in resting memory CD4(+) T cells. This reservoir presents a major barrier to the cure of HIV-1 infection. To purge the reservoir, pharmacological reactivation of latent HIV-1 has been proposed and tested both in vitro and in vivo. A key remaining question is whether virus-specific immune mechanisms, including cytotoxic T lymphocytes (CTLs), can clear infected cells in ART-treated patients after latency is reversed. Here we show that there is a striking all or none pattern for CTL escape mutations in HIV-1 Gag epitopes. Unless ART is started early, the vast majority (>98%) of latent viruses carry CTL escape mutations that render infected cells insensitive to CTLs directed at common epitopes. To solve this problem, we identified CTLs that could recognize epitopes from latent HIV-1 that were unmutated in every chronically infected patient tested. Upon stimulation, these CTLs eliminated target cells infected with autologous virus derived from the latent reservoir, both in vitro and in patient-derived humanized mice. The predominance of CTL-resistant viruses in the latent reservoir poses a major challenge to viral eradication. Our results demonstrate that chronically infected patients retain a broad-spectrum viral-specific CTL response and that appropriate boosting of this response may be required for the elimination of the latent reservoir.


July 7, 2019  |  

Molecular and biological characterization of a new isolate of guinea pig cytomegalovirus.

Development of a vaccine against congenital infection with human cytomegalovirus is complicated by the issue of re-infection, with subsequent vertical transmission, in women with pre-conception immunity to the virus. The study of experimental therapeutic prevention of re-infection would ideally be undertaken in a small animal model, such as the guinea pig cytomegalovirus (GPCMV) model, prior to human clinical trials. However, the ability to model re-infection in the GPCMV model has been limited by availability of only one strain of virus, the 22122 strain, isolated in 1957. In this report, we describe the isolation of a new GPCMV strain, the CIDMTR strain. This strain demonstrated morphological characteristics of a typical Herpesvirinae by electron microscopy. Illumina and PacBio sequencing demonstrated a genome of 232,778 nt. Novel open reading frames ORFs not found in reference strain 22122 included an additional MHC Class I homolog near the right genome terminus. The CIDMTR strain was capable of dissemination in immune compromised guinea pigs, and was found to be capable of congenital transmission in GPCMV-immune dams previously infected with salivary gland-adapted strain 22122 virus. The availability of a new GPCMV strain should facilitate study of re-infection in this small animal model.


July 7, 2019  |  

Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts.

Pneumocystis jirovecii is a major cause of life-threatening pneumonia in immunosuppressed patients including transplant recipients and those with HIV/AIDS, yet surprisingly little is known about the biology of this fungal pathogen. Here we report near complete genome assemblies for three Pneumocystis species that infect humans, rats and mice. Pneumocystis genomes are highly compact relative to other fungi, with substantial reductions of ribosomal RNA genes, transporters, transcription factors and many metabolic pathways, but contain expansions of surface proteins, especially a unique and complex surface glycoprotein superfamily, as well as proteases and RNA processing proteins. Unexpectedly, the key fungal cell wall components chitin and outer chain N-mannans are absent, based on genome content and experimental validation. Our findings suggest that Pneumocystis has developed unique mechanisms of adaptation to life exclusively in mammalian hosts, including dependence on the lungs for gas and nutrients and highly efficient strategies to escape both host innate and acquired immune defenses.


July 7, 2019  |  

Long single-molecule reads can resolve the complexity of the influenza virus composed of rare, closely related mutant variants

As a result of a high rate of mutations and recombination events, an RNA-virus exists as a heterogeneous “swarm” of mutant variants. The long read length offered by single-molecule sequencing technologies allows each mutant variant to be sequenced in a single pass. However, high error rate limits the ability to reconstruct heterogeneous viral population composed of rare, related mutant variants. In this paper, we present 2SNV, a method able to tolerate the high error-rate of the single-molecule protocol and reconstruct mutant variants. 2SNV uses linkage between single nucleotide variations to efficiently distinguish them from read errors. To benchmark the sensitivity of 2SNV, we performed a single-molecule sequencing experiment on a sample containing a titrated level of known viral mutant variants. Our method is able to accurately reconstruct clone with frequency of 0.2 % and distinguish clones that differed in only two nucleotides distantly located on the genome. 2SNV outperforms existing methods for full-length viral mutant reconstruction. The open source implementation of 2SNV is freely available for download at http://?alan.?cs.?gsu.?edu/?NGS/???q=?content/?2snv.


July 7, 2019  |  

Structural basis for recombinatorial permissiveness in the generation of Anaplasma marginale Msp2 antigenic variants.

Sequential expression of outer membrane protein antigenic variants is an evolutionarily convergent mechanism used by bacterial pathogens to escape host immune clearance and establish persistent infection. Variants must be sufficiently structurally distinct to escape existing immune effectors yet retain core structural elements required for localization and function within the outer membrane. We examined this balance using Anaplasma marginale, which generates antigenic variants in the outer membrane protein Msp2 using gene conversion. The overwhelming majority of Msp2 variants expressed during long-term persistent infection are mosaics, derived by recombination of oligonucleotide segments from multiple alleles to form unique hypervariable regions (HVR). As a result, the mosaics are not under long-term selective pressure to encode a functional protein; consequently, we hypothesized that the Msp2 HVR is structurally permissive for mosaic expression. Using an integrated approach of predictive modeling with determination of native Msp2 protein structure and function, we demonstrate that structured elements, most notably ß-sheets, are significantly concentrated in the highly conserved N- and C-terminal domains. In contrast the HVR is overwhelmingly random coil with the structured a-helices and ß-sheets confined to the genomically defined “structural tethers” that separate the antigenically variable microdomains. This structure is supported by the surface exposure of the HVR microdomains and the slow diffusion type porin function in native Msp2. Importantly, the predominance of random coil provides plasticity for formation of functional HVR mosaics and realization of the full potential of segmental gene conversion to dramatically expand the variant repertoire. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.