Menu
September 22, 2019

Extensive and deep sequencing of the Venter/HuRef genome for developing and benchmarking genome analysis tools.

We produced an extensive collection of deep re-sequencing datasets for the Venter/HuRef genome using the Illumina massively-parallel DNA sequencing platform. The original Venter genome sequence is a very-high quality phased assembly based on Sanger sequencing. Therefore, researchers developing novel computational tools for the analysis of human genome sequence variation for the dominant Illumina sequencing technology can test and hone their algorithms by making variant calls from these Venter/HuRef datasets and then immediately confirm the detected variants in the Sanger assembly, freeing them of the need for further experimental validation. This process also applies to implementing and benchmarking existing genome analysis pipelines. We prepared and sequenced 200?bp and 350?bp short-insert whole-genome sequencing libraries (sequenced to 100x and 40x genomic coverages respectively) as well as 2?kb, 5?kb, and 12?kb mate-pair libraries (49x, 122x, and 145x physical coverages respectively). Lastly, we produced a linked-read library (128x physical coverage) from which we also performed haplotype phasing.


September 22, 2019

Integrative haplotype estimation with sub-linear complexity

The number of human genomes being genotyped or sequenced increases exponentially and efficient haplotype estimation methods able to handle this amount of data are now required. Here, we present a new method, SHAPEIT4, which substantially improves upon other methods to process large genotype and high coverage sequencing datasets. It notably exhibits sub-linear scaling with sample size, provides highly accurate haplotypes and allows integrating external phasing information such as large reference panels of haplotypes, collections of pre-phased variants and long sequencing reads. We provide SHAPET4 in an open source format on https://odelaneau.github.io/shapeit4/ and demonstrate its performance in terms of accuracy and running times on two gold standard datasets: the UK Biobank data and the Genome In A Bottle.


July 19, 2019

High-quality assembly of an individual of Yoruban descent

De novo assembly of human genomes is now a tractable effort due in part to advances in sequencing and mapping technologies. We use PacBio single-molecule, real-time (SMRT) sequencing and BioNano genomic maps to construct the first de novo assembly of NA19240, a Yoruban individual from Africa. This chromosome-scaffolded assembly of 3.08 Gb with a contig N50 of 7.25 Mb and a scaffold N50 of 78.6 Mb represents one of the most contiguous high-quality human genomes. We utilize a BAC library derived from NA19240 DNA and novel haplotype-resolving sequencing technologies and algorithms to characterize regions of complex genomic architecture that are normally lost due to compression to a linear haploid assembly. Our results demonstrate that multiple technologies are still necessary for complete genomic representation, particularly in regions of highly identical segmental duplications. Additionally, we show that diploid assembly has utility in improving the quality of de novo human genome assemblies.


July 19, 2019

De novo assembly and phasing of a Korean human genome.

Advances in genome assembly and phasing provide an opportunity to investigate the diploid architecture of the human genome and reveal the full range of structural variation across population groups. Here we report the de novo assembly and haplotype phasing of the Korean individual AK1 (ref. 1) using single-molecule real-time sequencing, next-generation mapping, microfluidics-based linked reads, and bacterial artificial chromosome (BAC) sequencing approaches. Single-molecule sequencing coupled with next-generation mapping generated a highly contiguous assembly, with a contig N50 size of 17.9?Mb and a scaffold N50 size of 44.8?Mb, resolving 8 chromosomal arms into single scaffolds. The de novo assembly, along with local assemblies and spanning long reads, closes 105 and extends into 72 out of 190 euchromatic gaps in the reference genome, adding 1.03?Mb of previously intractable sequence. High concordance between the assembly and paired-end sequences from 62,758 BAC clones provides strong support for the robustness of the assembly. We identify 18,210 structural variants by direct comparison of the assembly with the human reference, identifying thousands of breakpoints that, to our knowledge, have not been reported before. Many of the insertions are reflected in the transcriptome and are shared across the Asian population. We performed haplotype phasing of the assembly with short reads, long reads and linked reads from whole-genome sequencing and with short reads from 31,719 BAC clones, thereby achieving phased blocks with an N50 size of 11.6?Mb. Haplotigs assembled from single-molecule real-time reads assigned to haplotypes on phased blocks covered 89% of genes. The haplotigs accurately characterized the hypervariable major histocompatability complex region as well as demonstrating allele configuration in clinically relevant genes such as CYP2D6. This work presents the most contiguous diploid human genome assembly so far, with extensive investigation of unreported and Asian-specific structural variants, and high-quality haplotyping of clinically relevant alleles for precision medicine.


July 19, 2019

Cytogenomic identification and long-read single molecule real-time (SMRT) sequencing of a Bardet-Biedl Syndrome 9 (BBS9) deletion.

Bardet-Biedl syndrome (BBS) is a recessive disorder characterized by heterogeneous clinical manifestations, including truncal obesity, rod-cone dystrophy, renal anomalies, postaxial polydactyly, and variable developmental delays. At least 20 genes have been implicated in BBS, and all are involved in primary cilia function. We report a 1-year-old male child from Guyana with obesity, postaxial polydactyly on his right foot, hypotonia, ophthalmologic abnormalities, and developmental delay, which together indicated a clinical diagnosis of BBS. Clinical chromosomal microarray (CMA) testing and high-throughput BBS gene panel sequencing detected a homozygous 7p14.3 deletion of exons 1-4 of BBS9 that was encompassed by a 17.5?Mb region of homozygosity at chromosome 7p14.2-p21.1. The precise breakpoints of the deletion were delineated to a 72.8?kb region in the proband and carrier parents by third-generation long-read single molecule real-time (SMRT) sequencing (Pacific Biosciences), which suggested non-homologous end joining as a likely mechanism of formation. Long-read SMRT sequencing of the deletion breakpoints also determined that the aberration included the neighboring RP9 gene implicated in retinitis pigmentosa; however, the clinical significance of this was considered uncertain given the paucity of reported cases with unambiguous RP9 mutations. Taken together, our study characterized a BBS9 deletion, and the identification of this shared haplotype in the parents suggests that this pathogenic aberration may be a BBS founder mutation in the Guyanese population. Importantly, this informative case also highlights the utility of long-read SMRT sequencing to map nucleotide breakpoints of clinically relevant structural variants.


July 19, 2019

Piercing the dark matter: bioinformatics of long-range sequencing and mapping.

Several new genomics technologies have become available that offer long-read sequencing or long-range mapping with higher throughput and higher resolution analysis than ever before. These long-range technologies are rapidly advancing the field with improved reference genomes, more comprehensive variant identification and more complete views of transcriptomes and epigenomes. However, they also require new bioinformatics approaches to take full advantage of their unique characteristics while overcoming their complex errors and modalities. Here, we discuss several of the most important applications of the new technologies, focusing on both the currently available bioinformatics tools and opportunities for future research.


July 19, 2019

Accurate detection of complex structural variations using single-molecule sequencing.

Structural variations are the greatest source of genetic variation, but they remain poorly understood because of technological limitations. Single-molecule long-read sequencing has the potential to dramatically advance the field, although high error rates are a challenge with existing methods. Addressing this need, we introduce open-source methods for long-read alignment (NGMLR; https://github.com/philres/ngmlr ) and structural variant identification (Sniffles; https://github.com/fritzsedlazeck/Sniffles ) that provide unprecedented sensitivity and precision for variant detection, even in repeat-rich regions and for complex nested events that can have substantial effects on human health. In several long-read datasets, including healthy and cancerous human genomes, we discovered thousands of novel variants and categorized systematic errors in short-read approaches. NGMLR and Sniffles can automatically filter false events and operate on low-coverage data, thereby reducing the high costs that have hindered the application of long reads in clinical and research settings.


July 19, 2019

How well can we create phased, diploid, human genomes?: An assessment of FALCON-Unzip phasing using a human trio

Long read sequencing technology has allowed researchers to create de novo assemblies with impressive continuity[1,2]. This advancement has dramatically increased the number of reference genomes available and hints at the possibility of a future where personal genomes are assembled rather than resequenced. In 2016 Pacific Biosciences released the FALCON-Unzip framework, which can provide long, phased haplotype contigs from de novo assemblies. This phased genome algorithm enhances the accuracy of highly heterozygous organisms and allows researchers to explore questions that require haplotype information such as allele-specific expression and regulation. However, validation of this technique has been limited to small genomes or inbred individuals[3]. As a roadmap to personal genome assembly and phasing, we assess the phasing accuracy of FALCON-Unzip in humans using publicly available data for the Ashkenazi trio from the Genome in a Bottle Consortium[4]. To assess the accuracy of the Unzip algorithm, we assembled the genome of the son using FALCON and FALCON Unzip, genotyped publicly available short read data for the mother and the father, and observed the inheritance pattern of the parental SNPs along the phased genome of the son. We found that 72.8% of haplotype contigs share SNPs with only one parent suggesting that these contigs are correctly phased. Most mis-phased SNPs are random but present in high frequency toward the end of haplotype contigs. Approximately 20.7% of mis-phased haplotype contigs contain clusters of mis-phased SNPs, suggesting that haplotypes were mis-joined by FALCON-Unzip. Mis-joined boundaries in those contigs are located in areas of low SNP density. This research demonstrates that the FALCON-Unzip algorithm can be used to create long and accurate haplotypes for humans and identifies problematic regions that could benefit in future improvement.


July 19, 2019

De novo assembly of two Swedish genomes reveals missing segments from the human GRCh38 reference and improves variant calling of population-scale sequencing data.

The current human reference sequence (GRCh38) is a foundation for large-scale sequencing projects. However, recent studies have suggested that GRCh38 may be incomplete and give a suboptimal representation of specific population groups. Here, we performed a de novo assembly of two Swedish genomes that revealed over 10 Mb of sequences absent from the human GRCh38 reference in each individual. Around 6 Mb of these novel sequences (NS) are shared with a Chinese personal genome. The NS are highly repetitive, have an elevated GC-content, and are primarily located in centromeric or telomeric regions. Up to 1 Mb of NS can be assigned to chromosome Y, and large segments are also missing from GRCh38 at chromosomes 14, 17, and 21. Inclusion of NS into the GRCh38 reference radically improves the alignment and variant calling from short-read whole-genome sequencing data at several genomic loci. A re-analysis of a Swedish population-scale sequencing project yields > 75,000 putative novel single nucleotide variants (SNVs) and removes > 10,000 false positive SNV calls per individual, some of which are located in protein coding regions. Our results highlight that the GRCh38 reference is not yet complete and demonstrate that personal genome assemblies from local populations can improve the analysis of short-read whole-genome sequencing data.


July 7, 2019

HySA: a Hybrid Structural variant Assembly approach using next-generation and single-molecule sequencing technologies.

Achieving complete, accurate, and cost-effective assembly of human genomes is of great importance for realizing the promise of precision medicine. The abundance of repeats and genetic variations in human genomes and the limitations of existing sequencing technologies call for the development of novel assembly methods that can leverage the complementary strengths of multiple technologies. We propose a Hybrid Structural variant Assembly (HySA) approach that integrates sequencing reads from next-generation sequencing and single-molecule sequencing technologies to accurately assemble and detect structural variants (SVs) in human genomes. By identifying homologous SV-containing reads from different technologies through a bipartite-graph-based clustering algorithm, our approach turns a whole genome assembly problem into a set of independent SV assembly problems, each of which can be effectively solved to enhance the assembly of structurally altered regions in human genomes. We used data generated from a haploid hydatidiform mole genome (CHM1) and a diploid human genome (NA12878) to test our approach. The result showed that, compared with existing methods, our approach had a low false discovery rate and substantially improved the detection of many types of SVs, particularly novel large insertions, small indels (10-50 bp), and short tandem repeat expansions and contractions. Our work highlights the strengths and limitations of current approaches and provides an effective solution for extending the power of existing sequencing technologies for SV discovery.© 2017 Fan et al.; Published by Cold Spring Harbor Laboratory Press.


July 7, 2019

HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies.

Many tools have been developed for haplotype assembly-the reconstruction of individual haplotypes using reads mapped to a reference genome sequence. Due to increasing interest in obtaining haplotype-resolved human genomes, a range of new sequencing protocols and technologies have been developed to enable the reconstruction of whole-genome haplotypes. However, existing computational methods designed to handle specific technologies do not scale well on data from different protocols. We describe a new algorithm, HapCUT2, that extends our previous method (HapCUT) to handle multiple sequencing technologies. Using simulations and whole-genome sequencing (WGS) data from multiple different data types-dilution pool sequencing, linked-read sequencing, single molecule real-time (SMRT) sequencing, and proximity ligation (Hi-C) sequencing-we show that HapCUT2 rapidly assembles haplotypes with best-in-class accuracy for all data types. In particular, HapCUT2 scales well for high sequencing coverage and rapidly assembled haplotypes for two long-read WGS data sets on which other methods struggled. Further, HapCUT2 directly models Hi-C specific error modalities, resulting in significant improvements in error rates compared to HapCUT, the only other method that could assemble haplotypes from Hi-C data. Using HapCUT2, haplotype assembly from a 90× coverage whole-genome Hi-C data set yielded high-resolution haplotypes (78.6% of variants phased in a single block) with high pairwise phasing accuracy (~98% across chromosomes). Our results demonstrate that HapCUT2 is a robust tool for haplotype assembly applicable to data from diverse sequencing technologies.© 2017 Edge et al.; Published by Cold Spring Harbor Laboratory Press.


July 7, 2019

Toolkit for automated and rapid discovery of structural variants.

Structural variations (SV) are broadly defined as genomic alterations that affect > 50 bp of DNA, which are shown to have significant effect on evolution and disease. The advent of high throughput sequencing (HTS) technologies and the ability to perform whole genome sequencing (WGS), makes it feasible to study these variants in depth. However, discovery of all forms of SV using WGS has proven to be challenging as the short reads produced by the predominant HTS platforms (<200bp for current technologies) and the fact that most genomes include large amounts of repeats make it very difficult to unambiguously map and accurately characterize such variants. Furthermore, existing tools for SV discovery are primarily developed for only a few of the SV types, which may have conflicting sequence signatures (i.e. read pairs, read depth, split reads) with other, untargeted SV classes. Here we are introduce a new framework, Tardis, which combines multiple read signatures into a single package to characterize most SV types simultaneously, while preventing such conflicts. Tardis also has a modular structure that makes it easy to extend for the discovery of additional forms of SV. Copyright © 2017. Published by Elsevier Inc.


July 7, 2019

Discovery and genotyping of novel sequence insertions in many sequenced individuals

Motivation: Despite recent advances in algorithms design to characterize structural variation using high-throughput short read sequencing (HTS) data, characterization of novel sequence insertions longer than the average read length remains a challenging task. This is mainly due to both computational difficulties and the complexities imposed by genomic repeats in generating reliable assemblies to accurately detect both the sequence content and the exact location of such insertions. Additionally, de novo genome assembly algorithms typically require a very high depth of coverage, which may be a limiting factor for most genome studies. Therefore, characterization of novel sequence insertions is not a routine part of most sequencing projects. There are only a handful of algorithms that are specifically developed for novel sequence insertion discovery that can bypass the need for the whole genome de novo assembly. Still, most such algorithms rely on high depth of coverage, and to our knowledge there is only one method (PopIns) that can use multi-sample data to “collectively” obtain a very high coverage dataset to accurately find insertions common in a given population. Result: Here, we present Pamir, a new algorithm to efficiently and accurately discover and genotype novel sequence insertions using either single or multiple genome sequencing datasets. Pamir is able to detect breakpoint locations of the insertions and calculate their zygosity (i.e. heterozygous versus homozygous) by analyzing multiple sequence signatures, matching one-end-anchored sequences to small-scale de novo assemblies of unmapped reads, and conducting strand-aware local assembly. We test the efficacy of Pamir on both simulated and real data, and demonstrate its potential use in accurate and routine identification of novel sequence insertions in genome projects. Availability and implementation: Pamir is available at https://github.com/vpc-ccg/pamir. Contact:fhach@sfu.ca, prostatecentre.com or calkan@cs.bilkent.edu.tr Supplementary information:Supplementary data are available at Bioinformatics online.


July 7, 2019

Automated structural variant verification in human genomesw using single-molecule electronic DNA mapping.

The importance of structural variation in human disease and the difficulty of detecting structural variants larger than 50 base pairs has led to the development of several long-read sequencing technologies and optical mapping platforms. Frequently, multiple technologies and ad hoc methods are required to obtain a consensus regarding the location, size and nature of a structural variant, with no approach able to reliably bridge the gap of variant sizes between the domain of short-read approaches and the largest rearrangements observed with optical mapping. To address this unmet need, we have developed a new software package, SV-VerifyTM, which utilizes data collected with the Nabsys High Definition Mapping (HD-MappingTM) system, to perform hypothesis-based verification of putative deletions. We demonstrate that whole genome maps, constructed from electronic detection of tagged DNA, hundreds of kilobases in length, can be used effectively to facilitate calling of structural variants ranging in size from 300 base pairs to hundreds of kilobase pairs. SV-Verify implements hypothesis-based verification of putative structural variants using a set of support vector machines and is capable of concurrently testing several thousand independent hypotheses. We describe support vector machine training, utilizing a well-characterized human genome, and application of the resulting classifiers to another human genome, demonstrating high sensitivity and specificity for deletions >= 300 base pairs.


July 7, 2019

SVachra: a tool to identify genomic structural variation in mate pair sequencing data containing inward and outward facing reads.

Characterization of genomic structural variation (SV) is essential to expanding the research and clinical applications of genome sequencing. Reliance upon short DNA fragment paired end sequencing has yielded a wealth of single nucleotide variants and internal sequencing read insertions-deletions, at the cost of limited SV detection. Multi-kilobase DNA fragment mate pair sequencing has supplemented the void in SV detection, but introduced new analytic challenges requiring SV detection tools specifically designed for mate pair sequencing data. Here, we introduce SVachra – Structural Variation Assessment of CHRomosomal Aberrations, a breakpoint calling program that identifies large insertions-deletions, inversions, inter- and intra-chromosomal translocations utilizing both inward and outward facing read types generated by mate pair sequencing.We demonstrate SVachra’s utility by executing the program on large-insert (Illumina Nextera) mate pair sequencing data from the personal genome of a single subject (HS1011). An additional data set of long-read (Pacific BioSciences RSII) was also generated to validate SV calls from SVachra and other comparison SV calling programs. SVachra exhibited the highest validation rate and reported the widest distribution of SV types and size ranges when compared to other SV callers.SVachra is a highly specific breakpoint calling program that exhibits a more unbiased SV detection methodology than other callers.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.