Menu
July 7, 2019

Genomic and transcriptomic analysis of the streptomycin-dependent Mycobacterium tuberculosis strain 18b.

The ability of Mycobacterium tuberculosis to establish a latent infection (LTBI) in humans confounds the treatment of tuberculosis. Consequently, there is a need to discover new therapeutic agents that can kill M. tuberculosis both during active disease and LTBI. The streptomycin-dependent strain of M. tuberculosis, 18b, provides a useful tool for this purpose since upon removal of streptomycin (STR) it enters a non-replicating state that mimics latency both in vitro and in animal models.The 4.41 Mb genome sequence of M. tuberculosis 18b was determined and this revealed the strain to belong to clade 3 of the ancient ancestral lineage of the Beijing family. STR-dependence was attributable to insertion of a single cytosine in the 530 loop of the 16S rRNA and to a single amino acid insertion in the N-terminal domain of initiation factor 3. RNA-seq was used to understand the genetic programme activated upon STR-withdrawal and hence to gain insight into LTBI. This revealed reconfiguration of gene expression and metabolic pathways showing strong similarities between non-replicating 18b and M. tuberculosis residing within macrophages, and with the core stationary phase and microaerophilic responses.The findings of this investigation confirm the validity of 18b as a model for LTBI, and provide insight into both the evolution of tubercle bacilli and the functioning of the ribosome.


July 7, 2019

Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults.

The oncogenic mechanisms underlying acute lymphoblastic leukemia (ALL) in adolescents and young adults (AYA; 15-39 years old) remain largely elusive. Here we have searched for new oncogenes in AYA-ALL by performing RNA-seq analysis of Philadelphia chromosome (Ph)-negative AYA-ALL specimens (n = 73) with the use of a next-generation sequencer. Interestingly, insertion of D4Z4 repeats containing the DUX4 gene into the IGH locus was frequently identified in B cell AYA-ALL, leading to a high level of expression of DUX4 protein with an aberrant C terminus. A transplantation assay in mice demonstrated that expression of DUX4-IGH in pro-B cells was capable of generating B cell leukemia in vivo. DUX4 fusions were preferentially detected in the AYA generation. Our data thus show that DUX4 can become an oncogenic driver as a result of somatic chromosomal rearrangements and that AYA-ALL may be a clinical entity distinct from ALL at other ages.


July 7, 2019

Complete genome sequence analysis of Pandoraea pnomenusa type strain DSM 16536(T) isolated from a cystic fibrosis patient.

The genus of Pandoraea was first proposed in 2000 following the isolation from the sputum of cystic fibrosis patients (Coenye et al., 2000). Five species were initially assigned to the novel genus namely Pandoraea apista, Pandoraea pulmonicola, Pandoraea pnomenusa, Pandoraea sputorum, and Pandoraea norimbergensis but the description of four new species and another four genomospecies in the subsequent years led to a total of nine species and four genomospecies within the genus of Pandoraea (Daneshvar et al., 2001; Anandham et al., 2010; Sahin et al., 2011). The isolation of Pandoraea spp. from various environmental samples such as water, sludge, and soils have been reported, but to date, only P. pnomenusa, P. apista, P. pulmonicola, and P. sputorum were isolated from clinical specimens such as blood, sputum and bronchial fluid of patients with cystic fibrosis or chronic lung diseases (Coenye et al., 2000; Daneshvar et al., 2001; Stryjewski et al., 2003; Han-Jen et al., 2013). Members of Pandoraea tend to exhibit broad resistance to ampicillin, extended-spectrum cephalosporins, aztreonam, aminoglycosides, and meropenem but they are sensitive to imipenem (Daneshvar et al., 2001; Stryjewski et al., 2003). However, the clinical significance and prevalence of these multi-drug resistant bacteria among patients with cystic fibrosis or respiratory diseases remained unknown since Pandoraea spp. are usually misidentified as Burkholderia cepacia complex, Ralstonia pickettii, or Ralstonia paucula (Segonds et al., 2003). Ambiguity in differentiating between B. cepacia complex, Ralstonia spp. and Pandoraea spp. can be resolved by 16S ribosomal DNA-PCR (Coenye et al., 2001) and gyrB gene restriction fragment length polymorphism (Coenye and LiPuma, 2002) but the limited use of molecular typing methods in routine clinical microbiological laboratory has resulted in the underreporting of Pandoraea spp. in clinical cases.


July 7, 2019

Whole genome sequence of Pantoea ananatis R100, an antagonistic bacterium isolated from rice seed.

Pantoea ananatis is a group of bacteria, which was first reported as plant pathogen. Recently, several papers also described its biocontrol ability. In 2003, P. ananatis R100, which showed strong antagonism against several plant pathogens, was isolated from rice seeds. In this study, whole genome sequence of this strain was determined by SMRT Cell technology. The total genome size of R100 is 4,857,861bp with 4659 coding genes (CDS), 82 tRNAs and 22 rRNAs. The genome sequence of R100 may shed a light on the research of antagonism P. ananatis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.


July 7, 2019

Filling in the gap of human chromosome 4: Single Molecule Real Time sequencing of macrosatellite repeats in the facioscapulohumeral muscular dystrophy locus.

A majority of facioscapulohumeral muscular dystrophy (FSHD) is caused by contraction of macrosatellite repeats called D4Z4 that are located in the subtelomeric region of human chromosome 4q35. Sequencing the FSHD locus has been technically challenging due to its long size and nearly identical nature of repeat elements. Here we report sequencing and partial assembly of a BAC clone carrying an entire FSHD locus by a single molecule real time (SMRT) sequencing technology which could produce long reads up to about 18 kb containing D4Z4 repeats. De novo assembly by Hierarchical Genome Assembly Process 1 (HGAP.1) yielded a contig of 41 kb containing all but a part of the most distal D4Z4 element. The validity of the sequence model was confirmed by an independent approach employing anchored multiple sequence alignment by Kalign using reads containing unique flanking sequences. Our data will provide a basis for further optimization of sequencing and assembly conditions of D4Z4.


July 7, 2019

Single-locus enrichment without amplification for sequencing and direct detection of epigenetic modifications.

A gene-level targeted enrichment method for direct detection of epigenetic modifications is described. The approach is demonstrated on the CGG-repeat region of the FMR1 gene, for which large repeat expansions, hitherto refractory to sequencing, are known to cause fragile X syndrome. In addition to achieving a single-locus enrichment of nearly 700,000-fold, the elimination of all amplification steps removes PCR-induced bias in the repeat count and preserves the native epigenetic modifications of the DNA. In conjunction with the single-molecule real-time sequencing approach, this enrichment method enables direct readout of the methylation status and the CGG repeat number of the FMR1 allele(s) for a clonally derived cell line. The current method avoids potential biases introduced through chemical modification and/or amplification methods for indirect detection of CpG methylation events.


July 7, 2019

A carbapenem-resistant Pseudomonas aeruginosa isolate harboring two copies of blaIMP-34 encoding a metallo-ß-lactamase.

A carbapenem-resistant strain of Pseudomonas aeruginosa, NCGM1984, was isolated in 2012 from a hospitalized patient in Japan. Immunochromatographic assay showed that the isolate was positive for IMP-type metallo-ß-lactamase. Complete genome sequencing revealed that NCGM1984 harbored two copies of blaIMP-34, located at different sites on the chromosome. Each blaIMP-34 was present in the same structures of the class 1 integrons, tnpA(ISPa7)-intI1-qacG-blaIMP-34-aac(6′)-Ib-qacEdelta1-sul1-orf5-tniBdelta-tniA. The isolate belonged to multilocus sequence typing ST235, one of the international high-risk clones. IMP-34, with an amino acid substitution (Glu126Gly) compared with IMP-1, hydrolyzed all ß-lactamases tested except aztreonam, and its catalytic activities were similar to IMP-1. This is the first report of a clinical isolate of an IMP-34-producing P. aeruginosa harboring two copies of blaIMP-34 on its chromosome.


July 7, 2019

Characterization of VCC-1, a novel ambler class A carbapenemase from Vibrio cholerae isolated from imported retail shrimp sold in Canada.

One of the core goals of the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) is to monitor major meat commodities for antimicrobial resistance. Targeted studies with methodologies based on core surveillance protocols are used to examine other foods, e.g., seafood, for antimicrobial resistance to detect resistances of concern to public health. Here we report the discovery of a novel Ambler class A carbapenemase that was identified in a nontoxigenic strain of Vibrio cholerae (N14-02106) isolated from shrimp that was sold for human consumption in Canada. V. cholerae N14-02106 was resistant to penicillins, carbapenems, and monobactam antibiotics; however, PCR did not detect common ß-lactamases. Bioinformatic analysis of the whole-genome sequence of V. cholerae N14-02106 revealed on the large chromosome a novel carbapenemase (referred to here as VCC-1, for Vibrio cholerae carbapenemase 1) with sequence similarity to class A enzymes. Two copies of blaVCC-1 separated and flanked by ISVch9 (i.e., 3 copies of ISVch9) were found in an acquired 8.5-kb region inserted into a VrgG family protein gene. Cloned blaVCC-1 conferred a ß-lactam resistance profile similar to that in V. cholerae N14-02106 when it was transformed into a susceptible laboratory strain of Escherichia coli. Purified VCC-1 was found to hydrolyze penicillins, 1st-generation cephalosporins, aztreonam, and carbapenems, whereas 2nd- and 3rd-generation cephalosporins were poor substrates. Using nitrocefin as a reporter substrate, VCC-1 was moderately inhibited by clavulanic acid and tazobactam but not EDTA. In this report, we present the discovery of a novel class A carbapenemase from the food supply. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019

Fully closed genome sequences of five type strains of the genus Cronobacter and one Cronobacter sakazakii strain.

Cronobacteris associated with infant infections and the consumption of reconstituted infant formula. Here we sequenced and closed six genomes ofC. condimenti(T),C. muytjensii(T),C. universalis(T),C. malonaticus(T),C. dublinensis(T), andC. sakazakiithat can be used as reference genomes in single nucleotide polymorphism (SNP)-based next-generation sequencing (NGS) analysis for source tracking investigations. Copyright © 2016 Moine et al.


July 7, 2019

Genome sequence and analysis of Escherichia coli MRE600, a colicinogenic, nonmotile strain that lacks RNase I and the type I methyltransferase, EcoKI.

Escherichia coli strain MRE600 was originally identified for its low RNase I activity and has therefore been widely adopted by the biomedical research community as a preferred source for the expression and purification of transfer RNAs and ribosomes. Despite its widespread use, surprisingly little information about its genome or genetic content exists. Here, we present the first de novo assembly and description of the MRE600 genome and epigenome. To provide context to these studies of MRE600, we include comparative analyses with E. coli K-12 MG1655 (K12). Pacific Biosciences Single Molecule, Real-Time sequencing reads were assembled into one large chromosome (4.83 Mb) and three smaller plasmids (89.1, 56.9, and 7.1 kb). Interestingly, the 7.1-kb plasmid possesses genes encoding a colicin E1 protein and its associated immunity protein. The MRE600 genome has a G + C content of 50.8% and contains a total of 5,181 genes, including 4,913 protein-encoding genes and 268 RNA genes. We identified 41,469 modified DNA bases (0.83% of total) and found that MRE600 lacks the gene for type I methyltransferase, EcoKI. Phylogenetic, taxonomic, and genetic analyses demonstrate that MRE600 is a divergent E. coli strain that displays features of the closely related genus, Shigella. Nevertheless, comparative analyses between MRE600 and E. coli K12 show that these two strains exhibit nearly identical ribosomal proteins, ribosomal RNAs, and highly homologous tRNA species. Substantiating prior suggestions that MRE600 lacks RNase I activity, the RNase I-encoding gene, rna, contains a single premature stop codon early in its open-reading frame. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019

Comparative genomic analyses of the Moraxella catarrhalis serosensitive and seroresistant lineages demonstrate their independent evolution.

The bacterial species Moraxella catarrhalishas been hypothesized as being composed of two distinct lineages (referred to as the seroresistant [SR] and serosensitive [SS]) with separate evolutionary histories based on several molecular typing methods, whereas 16S ribotyping has suggested an additional split within the SS lineage. Previously, we characterized whole-genome sequences of 12 SR-lineage isolates, which revealed a relatively small supragenome when compared with other opportunistic nasopharyngeal pathogens, suggestive of a relatively short evolutionary history. Here, we performed whole-genome sequencing on 18 strains from both ribotypes of the SS lineage, an additional SR strain, as well as four previously identified highly divergent strains based on multilocus sequence typing analyses. All 35 strains were subjected to a battery of comparative genomic analyses which clearly show that there are three lineages-the SR, SS, and the divergent. The SR and SS lineages are closely related, but distinct from each other based on three different methods of comparison: Allelic differences observed among core genes; possession of lineage-specific sets of core and distributed genes; and by an alignment of concatenated core sequences irrespective of gene annotation. All these methods show that the SS lineage has much longer interstrain branches than the SR lineage indicating that this lineage has likely been evolving either longer or faster than the SR lineage. There is evidence of extensive horizontal gene transfer (HGT) within both of these lineages, and to a lesser degree between them. In particular, we identified very high rates of HGT between these two lineages for ß-lactamase genes. The four divergent strains aresui generis, being much more distantly related to both the SR and SS groups than these other two groups are to each other. Based on average nucleotide identities, gene content, GC content, and genome size, this group could be considered as a separate taxonomic group. The SR and SS lineages, although distinct, clearly form a single species based on multiple criteria including a large common core genome, average nucleotide identity values, GC content, and genome size. Although neither of these lineages arose from within the other based on phylogenetic analyses, the question of how and when these lineages split and then subsequently reunited in the human nasopharynx is explored. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019

Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131.

Escherichia colisequence type 131 (ST131) has emerged globally as the most predominant extraintestinal pathogenic lineage within this clinically important species, and its association with fluoroquinolone and extended-spectrum cephalosporin resistance impacts significantly on treatment. The evolutionary histories of this lineage, and of important antimicrobial resistance elements within it, remain unclearly defined. This study of the largest worldwide collection (n= 215) of sequenced ST131E. coliisolates to date demonstrates that the clonal expansion of two previously recognized antimicrobial-resistant clades, C1/H30R and C2/H30Rx, started around 25 years ago, consistent with the widespread introduction of fluoroquinolones and extended-spectrum cephalosporins in clinical medicine. These two clades appear to have emerged in the United States, with the expansion of the C2/H30Rx clade driven by the acquisition of ablaCTX-M-15-containing IncFII-like plasmid that has subsequently undergone extensive rearrangement. Several other evolutionary processes influencing the trajectory of this drug-resistant lineage are described, including sporadic acquisitions of CTX-M resistance plasmids and chromosomal integration ofblaCTX-Mwithin subclusters followed by vertical evolution. These processes are also occurring for another family of CTX-M gene variants more recently observed among ST131, theblaCTX-M-14/14-likegroup. The complexity of the evolutionary history of ST131 has important implications for antimicrobial resistance surveillance, epidemiological analysis, and control of emerging clinical lineages ofE. coli These data also highlight the global imperative to reduce specific antibiotic selection pressures and demonstrate the important and varied roles played by plasmids and other mobile genetic elements in the perpetuation of antimicrobial resistance within lineages.IMPORTANCEEscherichia coli, perennially a major bacterial pathogen, is becoming increasingly difficult to manage due to emerging resistance to all preferred antimicrobials. Resistance is concentrated within specificE. colilineages, such as sequence type 131 (ST131). Clarification of the genetic basis for clonally associated resistance is key to devising intervention strategies. We used high-resolution genomic analysis of a large global collection of ST131 isolates to define the evolutionary history of extended-spectrum beta-lactamase production in ST131. We documented diverse contributory genetic processes, including stable chromosomal integrations of resistance genes, persistence and evolution of mobile resistance elements within sublineages, and sporadic acquisition of different resistance elements. Both global distribution and regional segregation were evident. The diversity of resistance element acquisition and propagation within ST131 indicates a need for control and surveillance strategies that target both bacterial strains and mobile genetic elements. Copyright © 2016 Stoesser et al.


July 7, 2019

Third-generation sequencing and the future of genomics

Third-generation long-range DNA sequencing and mapping technologies are creating a renaissance in high-quality genome sequencing. Unlike second-generation sequencing, which produces short reads a few hundred base-pairs long, third-generation single-molecule technologies generate over 10,000 bp reads or map over 100,000 bp molecules. We analyze how increased read lengths can be used to address long-standing problems in de novo genome assembly, structural variation analysis and haplotype phasing.


July 7, 2019

Complete genome sequence of Salmonella enterica serovar Typhimurium strain SO2 (sequence type 302) isolated from an asymptomatic child in Mexico.

The complete genome sequence of Salmonella enterica serovar Typhimurium strain SO2, isolated from an asymptomatic child in Mexico, was determined using PacBio single-molecule real-time technology. Strain SO2 has six complete chromosomal prophages, namely, ST104, Gifsy-2, ST64B, Gifsy-1, ELPhiS, and FSL SP-004, and carries a Salmonella virulence plasmid.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.