Menu
July 7, 2019  |  

What caused the outbreak of ESBL-producing Klebsiella pneumoniae in a neonatal intensive care unit, Germany 2009 to 2012? Reconstructing transmission with epidemiological analysis and whole-genome sequencing.

We aimed to retrospectively reconstruct the timing of transmission events and pathways in order to understand why extensive preventive measures and investigations were not sufficient to prevent new cases.We extracted available information from patient charts to describe cases and to compare them to the normal population of the ward. We conducted a cohort study to identify risk factors for pathogen acquisition. We sequenced the available isolates to determine the phylogenetic relatedness of Klebsiella pneumoniae isolates on the basis of their genome sequences.The investigation comprises 37 cases and the 10 cases with ESBL (extended-spectrum beta-lactamase)-producing K. pneumoniae bloodstream infection. Descriptive epidemiology indicated that a continuous transmission from person to person was most likely. Results from the cohort study showed that ‘frequent manipulation’ (a proxy for increased exposure to medical procedures) was significantly associated with being a case (RR 1.44, 95% CI 1.02 to 2.19). Genome sequences revealed that all 48 bacterial isolates available for sequencing from 31 cases were closely related (maximum genetic distance, 12 single nucleotide polymorphisms). Based on our calculation of evolutionary rate and sequence diversity, we estimate that the outbreak strain was endemic since 2008. Epidemiological and phylogenetic analyses consistently indicated that there were additional, undiscovered cases prior to the onset of microbiological screening and that the spread of the pathogen remained undetected over several years, driven predominantly by person-to-person transmission. Whole-genome sequencing provided valuable information on the onset, course and size of the outbreak, and on possible ways of transmission. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.


July 7, 2019  |  

Surveillance of Klebsiella pneumoniae and antibiotic resistance a retrospective and comparative study through a period in Nepal

Among the Enterobacteriacea Klebsiella pneumoniae is for the most part obtained from clinical samples and most probable cause of a typical form of primary pneumonia. It can also responsible for a variety of extrapulmonary infections, counting enteritis and meningitis in infants, urinary tract infections in children and adults and septicaemia in all age groups. Like wise these pathogens are significant cause of hospital acquired infections right through the world. The remarkable increase in the prevalence of antibiotic resistance in bacteria noticed in recent years represents a considerable challenge to public health microbiology worldwide. Klebsiellae have a tendency to possess antibiotic resistant plasmids; as a result, infections with multiple antibiotic-resistant strains can be likely. Only some degree of studies had been accounted in this regard from Nepal. The study was performed from January 1999 to March 2001. To come upon the existing dated antibiotic resistance pattern of Klebsiella pneumoniae. The study was carried out at TUTH laboratory with the objectives to ascertain the prevalence of Klebsiella pneumoniae in conjunction with to calculate the significance antibiotic resistance correlation between various antibiotics. By which the later 15 years analysis of antibiotic resistance was evaluated with comparison to this study.In this scrutiny the result was established that the numbers of total isolates including both klebsiella pneumoniae and other Kebsiella species were 62 from urine samples, 78 from pus samples and 96 from sputum samples and 34 from other miscellaneous samples. In this study positive culture for Klebsiella pneumoniae was 32.83% for sputum samples, 23.62.% for urine samples and 24.57% for pus samples. Majority of the strains isolated were sensitive to ß- lactamases, Floroquinolones, Aminoglycosides, Tetracycline and Cotrimoxazole, combined antibiotics. The current review study from 1999 to 2014 discloses the frequency of infections due to klebsiella pneumoniae strains in the hospitalized patients and their tendency towards antibiotic resistance was on the increase. Large quantity of antibiotics exploited for human therapy has resulted in the selection of pathogenic bacteria resistant to multiple antimicrobial drugs. This has become a vital clinical and infection control challenge, particularly in resource-limited settings with far above the ground a raising rate of antimicrobial resistance.


July 7, 2019  |  

Keeping an eye on P. aeruginosa.

This month’s Genome Watch looks at how whole-genome sequencing (WGS) can be used to track the source of Pseudomonas aeruginosa infection and to investigate the transition and adaptation of this opportunistic pathogen from the environment to the human host.


July 7, 2019  |  

Whole-genome sequencing identifies emergence of a quinolone resistance mutation in a case of Stenotrophomonas maltophilia bacteremia.

Whole-genome sequences for Stenotrophomonas maltophilia serial isolates from a bacteremic patient before and after development of levofloxacin resistance were assembled de novo and differed by one single-nucleotide variant in smeT, a repressor for multidrug efflux operon smeDEF. Along with sequenced isolates from five contemporaneous cases, they displayed considerable diversity compared against all published complete genomes. Whole-genome sequencing and complete assembly can conclusively identify resistance mechanisms emerging in S. maltophilia strains during clinical therapy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Molecular epidemiology of multidrug-resistant Acinetobacter baumannii isolates in a university hospital in Nepal reveals the emergence of a novel epidemic clonal lineage.

The emergence of multidrug-resistant (MDR) Acinetobacter baumannii has become a serious medical problem worldwide. To clarify the genetic and epidemiological properties of MDR A. baumannii strains isolated from a medical setting in Nepal, 246 Acinetobacter spp. isolates obtained from different patients were screened for MDR A. baumannii by antimicrobial disk susceptibility testing. Whole genomes of the MDR A. baumannii isolates were sequenced by MiSeq™ (Illumina), and the complete genome of one isolate (IOMTU433) was sequenced by PacBio RS II. Phylogenetic trees were constructed from single nucleotide polymorphism concatemers. Multilocus sequence types were deduced and drug resistance genes were identified. Of the 246 Acinetobacter spp. isolates, 122 (49.6%) were MDR A. baumannii, with the majority being resistant to aminoglycosides, carbapenems and fluoroquinolones but not to colistin and tigecycline. These isolates harboured the 16S rRNA methylase gene armA as well as bla(NDM-1), bla(OXA-23) or bla(OXA-58). MDR A. baumannii isolates belonging to clonal complex 1 (CC1) and CC2 as well as a novel clonal complex (CC149) have spread throughout a medical setting in Nepal. The MDR isolates harboured genes encoding carbapenemases (OXA and NDM-1) and a 16S rRNA methylase (ArmA). Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.


July 7, 2019  |  

Genomic epidemiology of an endoscope-associated outbreak of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae.

Increased incidence of infections due to Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae (KPC-Kp) was noted among patients undergoing endoscopic retrograde cholangiopancreatography (ERCP) at a single hospital. An epidemiologic investigation identified KPC-Kp and non-KPC-producing, extended-spectrum ß-lactamase (ESBL)-producing Kp in cultures from 2 endoscopes. Genotyping was performed on patient and endoscope isolates to characterize the microbial genomics of the outbreak. Genetic similarity of 51 Kp isolates from 37 patients and 3 endoscopes was assessed by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Five patient and 2 endoscope isolates underwent whole genome sequencing (WGS). Two KPC-encoding plasmids were characterized by single molecule, real-time sequencing. Plasmid diversity was assessed by endonuclease digestion. Genomic and epidemiologic data were used in conjunction to investigate the outbreak source. Two clusters of Kp patient isolates were genetically related to endoscope isolates by PFGE. A subset of patient isolates were collected post-ERCP, suggesting ERCP endoscopes as a possible source. A phylogeny of 7 Kp genomes from patient and endoscope isolates supported ERCP as a potential source of transmission. Differences in gene content defined 5 ST258 subclades and identified 2 of the subclades as outbreak-associated. A novel KPC-encoding plasmid, pKp28 helped define and track one endoscope-associated ST258 subclade. WGS demonstrated high genetic relatedness of patient and ERCP endoscope isolates suggesting ERCP-associated transmission of ST258 KPC-Kp. Gene and plasmid content discriminated the outbreak from endemic ST258 populations and assisted with the molecular epidemiologic investigation of an extended KPC-Kp outbreak.


July 7, 2019  |  

Next-generation sequencing and comparative analysis of sequential outbreaks caused by multidrug-resistant Acinetobacter baumannii at a large academic burn center.

Next-generation sequencing (NGS) analysis has emerged as a promising molecular epidemiological method for investigating health care-associated outbreaks. Here, we used NGS to investigate a 3-year outbreak of multidrug-resistant Acinetobacter baumannii (MDRAB) at a large academic burn center. A reference genome from the index case was generated using de novo assembly of PacBio reads. Forty-six MDRAB isolates were analyzed by pulsed-field gel electrophoresis (PFGE) and sequenced using an Illumina platform. After mapping to the index case reference genome, four samples were excluded due to low coverage, leaving 42 samples for further analysis. Multilocus sequence types (MLST) and the presence of acquired resistance genes were also determined from the sequencing data. A transmission network was inferred from genomic and epidemiological data using a Bayesian framework. Based on single-nucleotide variant (SNV) differences, this MDRAB outbreak represented three sequential outbreaks caused by distinct clones. The first and second outbreaks were caused by sequence type 2 (ST2), while the third outbreak was caused by ST79. For the second outbreak, the MLST and PFGE results were discordant. However, NGS-based SNV typing detected a recombination event and consequently enabled a more accurate phylogenetic analysis. The distribution of resistance genes varied among the three outbreaks. The first- and second-outbreak strains possessed a blaOXA-23-like group, while the third-outbreak strains harbored a blaOXA-40-like group. NGS-based analysis demonstrated the superior resolution of outbreak transmission networks for MDRAB and provided insight into the mechanisms of strain diversification between sequential outbreaks through recombination. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Dissemination of 16S rRNA methylase ArmA-producing acinetobacter baumannii and emergence of OXA-72 carbapenemase coproducers in Japan.

Forty-nine clinical isolates of multidrug-resistant Acinetobacter baumannii were obtained from 12 hospitals in 7 prefectures throughout Japan. Molecular phylogenetic analysis revealed the clonal spread of A. baumannii sequence type 208 (ST208) and ST455 isolates harboring the armA gene and ST512 harboring the armA and blaOXA-72 genes. These findings show that A. baumannii isolates harboring armA are disseminated throughout Japan, and this is the first report to show that A. baumannii strains harboring blaOXA-72 and armA are emerging in hospitals in Japan.


July 7, 2019  |  

Seeking the source of Pseudomonas aeruginosa infections in a recently opened hospital: an observational study using whole-genome sequencing.

Pseudomonas aeruginosa is a common nosocomial pathogen responsible for significant morbidity and mortality internationally. Patients may become colonised or infected with P. aeruginosa after exposure to contaminated sources within the hospital environment. The aim of this study was to determine whether whole-genome sequencing (WGS) can be used to determine the source in a cohort of burns patients at high risk of P. aeruginosa acquisition.An observational prospective cohort study.Burns care ward and critical care ward in the UK.Patients with >7% total burns by surface area were recruited into the study.All patients were screened for P. aeruginosa on admission and samples taken from their immediate environment, including water. Screening patients who subsequently developed a positive P. aeruginosa microbiology result were subject to enhanced environmental surveillance. All isolates of P. aeruginosa were genome sequenced. Sequence analysis looked at similarity and relatedness between isolates.WGS for 141 P. aeruginosa isolates were obtained from patients, hospital water and the ward environment. Phylogenetic analysis revealed eight distinct clades, with a single clade representing the majority of environmental isolates in the burns unit. Isolates from three patients had identical genotypes compared with water isolates from the same room. There was clear clustering of water isolates by room and outlet, allowing the source of acquisitions to be unambiguously identified. Whole-genome shotgun sequencing of biofilm DNA extracted from a thermostatic mixer valve revealed this was the source of a P. aeruginosa subpopulation previously detected in water. In the remaining two cases there was no clear link to the hospital environment.This study reveals that WGS can be used for source tracking of P. aeruginosa in a hospital setting, and that acquisitions can be traced to a specific source within a hospital ward. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.


July 7, 2019  |  

Genome sequencing of an extended series of NDM-producing Klebsiella pneumoniae isolates from Neonatal infections in a Nepali hospital characterizes the extent of community- versus hospital-associated transmission in an endemic setting.

NDM-producing Klebsiella pneumoniae strains represent major clinical and infection control challenges, particularly in resource-limited settings with high rates of antimicrobial resistance. Determining whether transmission occurs at a gene, plasmid, or bacterial strain level and within hospital and/or the community has implications for monitoring and controlling spread. Whole-genome sequencing (WGS) is the highest-resolution typing method available for transmission epidemiology. We sequenced carbapenem-resistant K. pneumoniae isolates from 26 individuals involved in several infection case clusters in a Nepali neonatal unit and 68 other clinical Gram-negative isolates from a similar time frame, using Illumina and PacBio technologies. Within-outbreak chromosomal and closed-plasmid structures were generated and used as data set-specific references. Three temporally separated case clusters were caused by a single NDM K. pneumoniae strain with a conserved set of four plasmids, one being a 304,526-bp plasmid carrying blaNDM-1. The plasmids contained a large number of antimicrobial/heavy metal resistance and plasmid maintenance genes, which may have explained their persistence. No obvious environmental/human reservoir was found. There was no evidence of transmission of outbreak plasmids to other Gram-negative clinical isolates, although blaNDM variants were present in other isolates in different genetic contexts. WGS can effectively define complex antimicrobial resistance epidemiology. Wider sampling frames are required to contextualize outbreaks. Infection control may be effective in terminating outbreaks caused by particular strains, even in areas with widespread resistance, although this study could not demonstrate evidence supporting specific interventions. Larger, detailed studies are needed to characterize resistance genes, vectors, and host strains involved in disease, to enable effective intervention. Copyright © 2014 Stoesser et al.


July 7, 2019  |  

Complete genome sequence of Staphylococcus aureus Z172, a vancomycin-intermediate and daptomycin-nonsusceptible methicillin-resistant strain isolated in Taiwan.

We report the complete genome sequence of Z172, a representative strain of sequence type 239-staphylococcal cassette chromosome mec type III (ST239-SCCmec type III) hospital-associated methicillin-resistant Staphylococcus aureus in Taiwan. Strain Z172 also exhibits a vancomycin-intermediate and daptomycin-nonsusceptible phenotype.


July 7, 2019  |  

Genomic analysis of 495 vancomycin-resistant Enterococcus faecium reveals broad dissemination of a vanA plasmid in more than 19 clones from Copenhagen, Denmark.

From 2012 to 2014, there has been a huge increase in vancomycin-resistant (vanA) Enterococcus faecium (VREfm) in Copenhagen, Denmark, with 602 patients infected or colonized with VREfm in 2014 compared with just 22 in 2012. The objective of this study was to describe the genetic epidemiology of VREfm to assess the contribution of clonal spread and horizontal transfer of the vanA transposon (Tn1546) and plasmid in the dissemination of VREfm in hospitals.VREfm from Copenhagen, Denmark (2012-14) were whole-genome sequenced. The clonal structure was determined and the structure of Tn1546-like transposons was characterized. One VREfm isolate belonging to the largest clonal group was sequenced using long-read technology to close a 37 kb vanA plasmid.Phylogeny revealed a polyclonal structure where 495 VREfm isolates were divided into 13 main groups and 7 small groups. The majority of the isolates were located in three groups (n?=?44, 100 and 218) and clonal spread of VREfm between wards and hospitals was identified. Five Tn1546-like transposon types were identified. A dominant truncated transposon (type 4, 92%) was spread across all but one VREfm group. The closed vanA plasmid was highly covered by reads from isolates containing the type 4 transposon.This study suggests that it was the dissemination of the type 4 Tn1546-like transposon and plasmid via horizontal transfer to multiple populations of E. faecium, followed by clonal spread of new VREfm clones, that contributed to the increase in and diversity of VREfm in Danish hospitals.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Evolutionary origins of the emergent ST796 clone of vancomycin resistant Enterococcus faecium.

From early 2012, a novel clone of vancomycin resistant Enterococcus faecium (assigned the multi locus sequence type ST796) was simultaneously isolated from geographically separate hospitals in south eastern Australia and New Zealand. Here we describe the complete genome sequence of Ef_aus0233, a representative ST796 E. faecium isolate. We used PacBio single molecule real-time sequencing to establish a high quality, fully assembled genome comprising a circular chromosome of 2,888,087 bp and five plasmids. Comparison of Ef_aus0233 to other E. faecium genomes shows Ef_aus0233 is a member of the epidemic hospital-adapted lineage and has evolved from an ST555-like ancestral progenitor by the accumulation or modification of five mosaic plasmids and five putative prophage, acquisition of two cryptic genomic islands, accrued chromosomal single nucleotide polymorphisms and a 80 kb region of recombination, also gaining Tn1549 and Tn916, transposons conferring resistance to vancomycin and tetracycline respectively. The genomic dissection of this new clone presented here underscores the propensity of the hospital E. faecium lineage to change, presumably in response to the specific conditions of hospital and healthcare environments.


July 7, 2019  |  

Perturbations of phosphatidate cytidylyltransferase (CdsA) mediate daptomycin resistance in Streptococcus mitis by a novel mechanism.

Streptococcus mitis/oralis is an important pathogen, causing life-threatening infections such as endocarditis and severe sepsis in immunocompromised patients. The ß-lactam antibiotics are the usual therapy of choice for this organism, but their effectiveness is threatened by the frequent emergence of resistance. The lipopeptide daptomycin (DAP) has been suggested for therapy against such resistant S. mitis/oralis strains due to its in vitro bactericidal activity and demonstrated efficacy against other Gram-positive pathogens. Unlike other bacteria, however, S. mitis/oralis has the unique ability to rapidly develop stable, high-level resistance to DAP upon exposure to the drug both in vivo and in vitro Using isogenic DAP-susceptible and DAP-resistant S. mitis/oralis strain pairs, we describe a mechanism of resistance to both DAP and cationic antimicrobial peptides that involves loss-of-function mutations in cdsA (encoding a phosphatidate cytidylyltransferase). CdsA catalyzes the synthesis of cytidine diphosphate-diacylglycerol, an essential phospholipid intermediate for the production of membrane phosphatidylglycerol and cardiolipin. DAP-resistant S. mitis/oralis strains demonstrated a total disappearance of phosphatidylglycerol, cardiolipin, and anionic phospholipid microdomains from membranes. In addition, these strains exhibited cross-resistance to cationic antimicrobial peptides from human neutrophils (i.e., hNP-1). Interestingly, CdsA-mediated changes in phospholipid metabolism were associated with DAP hyperaccumulation in a small subset of the bacterial population, without any binding by the remaining larger population. Our results indicate that CdsA is the major mediator of high-level DAP resistance in S. mitis/oralis and suggest a novel mechanism of bacterial survival against attack by antimicrobial peptides of both innate and exogenous origins. Copyright © 2017 American Society for Microbiology.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.