Menu
June 1, 2021  |  

Complete HIV-1 genomes from single molecules: Diversity estimates in two linked transmission pairs using clustering and mutual information.

We sequenced complete HIV-1 genomes from single molecules using Single Molecule, Real- Time (SMRT) Sequencing and derive de novo full-length genome sequences. SMRT sequencing yields long-read sequencing results from individual DNA molecules with a rapid time-to-result. These attributes make it a useful tool for continuous monitoring of viral populations. The single-molecule nature of the sequencing method allows us to estimate variant subspecies and relative abundances by counting methods. We detail mathematical techniques used in viral variant subspecies identification including clustering distance metrics and mutual information. Sequencing was performed in order to better understand the relationships between the specific sequences of transmitted viruses in linked transmission pairs. Samples representing HIV transmission pairs were selected from the Zambia Emory HIV Research Project (Lusaka, Zambia) and sequenced. We examine Single Genome Amplification (SGA) prepped samples and samples containing complex mixtures of genomes. Whole genome consensus estimates for each of the samples were made. Genome reads were clustered using a simple distance metric on aligned reads. Appropriate thresholds were chosen to yield distinct clusters of HIV genomes within samples. Mutual information between columns in the genome alignments was used to measure dependence. In silico mixtures of reads from the SGA samples were made to simulate samples containing exactly controlled complex mixtures of genomes and our clustering methods were applied to these complex mixtures. SMRT Sequencing data contained multiple full-length (greater than 9 kb) continuous reads for each sample. Simple whole genome consensus estimates easily identified transmission pairs. The clustering of the genome reads showed diversity differences between the samples, allowing us to characterize the diversity of the individual quasi-species comprising the patient viral populations across the full genome. Mutual information identified possible dependencies of different positions across the full HIV-1 genome. The SGA consensus genomes agreed with prior Sanger sequencing. Our clustering methods correctly segregated reads to their correct originating genome for the synthetic SGA mixtures. The results open up the potential for reference-agnostic and cost effective full genome sequencing of HIV-1.


June 1, 2021  |  

A comparison of 454 GS FLX Ti and PacBio RS in the context of characterizing HIV-1 intra-host diversity.

PacBio 2013 User Group Meeting Presentation Slides: Lance Hepler from UC San Diego’s Center for AIDS Research used the PacBio RS to study intra-host diversity in HIV-1. He compared PacBio’s performance to that of 454® sequencer, the platform he and his team previously used. Hepler noted that in general, there was strong agreement between the platforms; where results differed, he said that PacBio data had significantly better reproducibility and accuracy. “PacBio does not suffer from local coverage loss post-processing, whereas 454 has homopolymer problems,” he noted. Hepler said they are moving away from using 454 in favor of the PacBio system.


June 1, 2021  |  

High-throughput analysis of full-length proviral HIV-1 genomes from PBMCs.

Background: HIV-1 proviruses in peripheral blood mononuclear cells (PBMCs) are felt to be an important reservoir of HIV-1 infection. Given that this pool represents an archival library, it can be used to study virus evolution and CD4+ T cell survival. Accurate study of this pool is burdened by difficulties encountered in sequencing a full-length proviral genome, typically accomplished by assembling overlapping pieces and imputing the full genome. Methodology: Cryopreserved PBMCs collected from a total of 8 HIV+ patients from 1997-2001 were used for genomic DNA extraction. Patients had been receiving cART for 2-8 years at the time samples were obtained. 7 patients had pVL >50 copies/mL (mean: 312,282, range: 18,372-683,400) and 1 had pVL <50. Genomic DNA was subjected to limiting dilution prior to amplification of near-full-length genomes by a newly developed nested PCR. The predicted size of the PCR product was 9.0 kb, spanning from the 5’ LTR through the 3’ LTR. Single molecules were sequenced as near-full-length amplicons directly from PCR products without shearing using commercially available P4-C2 reagents and standard protocols on a PacBio RS II instrument. Quality of the genomes was validated by clonal positive controls and synthetic mixtures. Results: Near-full-length provirus genome sequences were successfully obtained from all 8 patients as continuous long reads from single molecules. PacBio sequencing required approximately 10% of the PCR product needed for Sanger sequencing and generated 325 MB per 3-hour run including 1,800 full-length intact genome reads on average. One patient’s sample was not at a limiting dilution and analysis revealed multiple subspecies. For 8 near-fulllength provirus genomes derived from the other 7 patients, large internal deletions were noted in 2 proviruses; APOBEC-mediated hypermutations were seen in 2 proviruses; and 4 proviruses appeared to be intact genomes. All of the defective proviruses showed a complete absence of resistance mutations in either RT or protease, even after 2-8 years of cART. On the contrary, all of the intact proviruses contained evidence of ART-resistance associated mutations suggesting that they represented relatively recent variants. Conclusions: Combining a novel protocol for full-length limiting dilution amplification of proviruses with PacBio SMRT sequencing allowed for the generation of near-full-length genomes with good quality and an ability to detect minor variants at the 1-10% level. Preliminary data analyses suggest that defective proviruses may represent archival variants that persist long-term in host cells, while intact proviruses within the PBMC pool showing evidence of active virus replication may represent more recent variants.


June 1, 2021  |  

Full-length HIV-1 env deep sequencing in a donor with broadly neutralizing V1/V2 antibodies.

Background: Understanding the co-evolution of HIV populations and broadly neutralizing antibodies (bNAbs) may inform vaccine design. Novel long-read, next-generation sequencing methods allow, for the first time, full-length deep sequencing of HIV env populations. Methods: We longitudinally examined HIV-1 env populations (12 time points) in a subtype A infected individual from the IAVI primary infection cohort (Protocol C) who developed bNAbs (62% ID50>50 on a diverse panel of 105 viruses) targeting the V1/V2 loop region. We developed a PacBio single molecule, real-time sequencing protocol to deeply sequence full-length env from HIV RNA. Bioinformatics tools were developed to align env sequences, infer phylogenies, and interrogate escape dynamics of key residues and glycosylation sites. PacBio env sequences were compared to env sequences generated through amplification and cloning. Env dynamics and viral escape motif evolution were interpreted in the context of the development V1/V2-targeting broadly neutralizing antibodies. Results: We collected a median of 6799 (range: 1770-14727) high quality full-length HIV env circular consensus sequences (CCS) per SMRT Cell, per time point. Using only CCS reads comprised of 6 or more passes over the HIV env insert (= 16 kb read length) ensured that our median per-base accuracy was 99.7%. A phylogeny inferred with PacBio and 100 cloned env sequences (10 time points) found the cloned sequences evenly distributed among PacBio sequences. Viral escape from the V1/V2 targeted bNAbs was evident at V2 positions 160, 166, 167, 169 and 181 (HxB2 numbering), exhibiting several distinct escape pathways by 40 months post-infection. Conclusions: Our PacBio full-length env sequencing method allowed unprecedented view and ability to characterize HIV-1 env dynamics throughout the first four years of infection. Longitudinal full-length env deep sequencing allows accurate phylogenetic inference, provides a detailed picture of escape dynamics in epitope regions, and can identify minority variants, all of which will prove critical for increasing our understanding of how env evolution drives the development of antibody breadth.


June 1, 2021  |  

Sequencing complex mixtures of HIV-1 genomes with single-base resolution.

A large number of distinct HIV-1 genomes can be present in a single clinical sample from a patient chronically infected with HIV-1. We examined samples containing complex mixtures of near-full-length HIV-1 genomes. Single molecules were sequenced as near-full-length (9.6 kb) amplicons directly from PCR products without shearing. Mathematical analysis techniques deconvolved the complex mixture of reads into estimates of distinct near-full-length viral genomes with their relative abundances. We correctly estimated the originating genomes to single-base resolution along with their relative abundances for mixtures where the truth was known exactly by independent sequencing methods. Correct estimates were made even when genomes diverged by a single base. Minor abundances of 5% were reliably detected. SMRT Sequencing data contained near-full-length continuous reads for each sample including some runs with greater than 10,000 near-full-length-genome reads in a three-hour collection time. SMRT Sequencing yields long- read sequencing results from individual DNA molecules with a rapid time-to-result. The single-molecule, full-length nature of the sequencing method allows us to estimate variant subspecies and relative abundances even from samples containing complex mixtures of genomes that differ by single bases. These results open the possibility of cost-effective full-genome sequencing of HIV-1 in mixed populations for applications such as incorporated-HIV-1 screening. In screening, genomes can differ by one to many thousands of bases and the ability to measure them can help scientifically inform treatment strategies.


June 1, 2021  |  

High-accuracy, single-base resolution of near-full-length HIV genomes.

Background: The HIV-1 proviral reservoir is incredibly stable, even while undergoing antiretroviral therapy, and is seen as the major barrier to HIV-1 eradication. Identifying and comprehensively characterizing this reservoir will be critical to achieving an HIV cure. Historically, this has been a tedious and labor intensive process, requiring high-replicate single-genome amplification reactions, or overlapping amplicons that are then reconstructed into full-length genomes by algorithmic imputation. Here, we present a deep sequencing and analysis method able to determine the exact identity and relative abundances of near-full-length HIV genomes from samples containing mixtures of genomes without shearing or complex bioinformatic reconstruction. Methods: We generated clonal near-full-length (~9 kb) amplicons derived from single genome amplification (SGA) of primary proviral isolates or PCR of well-documented control strains. These clonal products were mixed at various abundances and sequenced as near-full-length (~9 kb) amplicons without shearing. Each mixture yielded many near-full-length HIV-1 reads. Mathematical analysis techniques resolved the complex mixture of reads into estimates of distinct near-full-length viral genomes with their relative abundances. Results: Single Molecule, Real-Time (SMRT) Sequencing data contained near-full-length (~9 kb) continuous reads for each sample including some runs with greater than 10,000 near-full-length-genome reads in a three-hour sequencing run. Our methods correctly recapitulated exactly the originating genomes at a single-base resolution and their relative abundances in both mixtures of clonal controls and SGAs, and these results were validated using independent sequencing methods. Correct resolution was achieved even when genomes differed only by a single base. Minor abundances of 5% were reliably detected. Conclusions: SMRT Sequencing yields long-read sequencing results from individual DNA molecules, a rapid time-to-result. The single-molecule, full-length nature of this sequencing method allows us to estimate variant subspecies and relative abundances with single-nucleotide resolution. This method allows for reference-agnostic and cost-effective full-genome sequencing of HIV-1, which could both further our understanding of latent infection and develop novel and improved tools for quantifying HIV provirus, which will be critical to cure HIV.


June 1, 2021  |  

An improved circular consensus algorithm with an application to detection of HIV-1 Drug-Resistance Associated Mutations (DRAMs)

Scientists who require confident resolution of heterogeneous populations across complex regions have been unable to transition to short-read sequencing methods. They continue to depend on Sanger Sequencing despite its cost and time inefficiencies. Here we present a new redesigned algorithm that allows the generation of circular consensus sequences (CCS) from individual SMRT Sequencing reads. With this new algorithm, dubbed CCS2, it is possible to reach arbitrarily high quality across longer insert lengths at a lower cost and higher throughput than Sanger Sequencing. We apply this new algorithm, dubbed CCS2, to the characterization of the HIV-1 K103N drug-resistance associated mutation, which is both important clinically, and represents a challenge due to regional sequence context. A mutation was introduced into the 3rd position of amino acid position 103 (A>C substitution) of the RT gene on a pNL4-3 backbone by site-directed mutagenesis. Regions spanning ~1,300 bp were PCR amplified from both the non-mutated and mutant (K103N) plasmids, and were sequenced individually and as a 50:50 mixture. Sequencing data were analyzed using the new CCS2 algorithm, which uses a fully-generative probabilistic model of our SMRT Sequencing process to polish consensus sequences to arbitrarily high accuracy. This result, previously demonstrated for multi-molecule consensus sequences with the Quiver algorithm, is made possible by incorporating per-Zero Mode Waveguide (ZMW) characteristics, thus accounting for the intrinsic changes in the sequencing process that are unique to each ZMW. With CCS2, we are able to achieve a per-read empirical quality of QV30 with 19X coverage. This yields ~5000 1.3 kb consensus sequences with a collective empirical quality of ~QV40. Additionally, we demonstrate a 0% miscall rate in both unmixed samples, and estimate a 48:52% frequency for the K103N mutation in the mixed sample, consistent with data produced by orthogonal platforms.


June 1, 2021  |  

An improved circular consensus algorithm with an application to detect HIV-1 Drug Resistance Associated Mutations (DRAMs)

Scientists who require confident resolution of heterogeneous populations across complex regions have been unable to transition to short-read sequencing methods. They continue to depend on Sanger sequencing despite its cost and time inefficiencies. Here we present a new redesigned algorithm that allows the generation of circular consensus sequences (CCS) from individual SMRT Sequencing reads. With this new algorithm, dubbed CCS2, it is possible to reach high quality across longer insert lengths at a lower cost and higher throughput than Sanger sequencing. We applied CCS2 to the characterization of the HIV-1 K103N drug-resistance associated mutation in both clonal and patient samples. This particular DRAM has previously proved to be clinically relevant, but challenging to characterize due to regional sequence context. First, a mutation was introduced into the 3rd position of amino acid position 103 (A>C substitution) of the RT gene on a pNL4-3 backbone by site-directed mutagenesis. Regions spanning ~1.3 kb were PCR amplified from both the non-mutated and mutant (K103N) plasmids, and were sequenced individually and as a 50:50 mixture. Additionally, the proviral reservoir of a subject with known dates of virologic failure of an Efavirenz-based regimen and with documented emergence of drug resistant (K103N) viremia was sequenced at several time points as a proof-of-concept study to determine the kinetics of retention and decay of K103N.Sequencing data were analyzed using the new CCS2 algorithm, which uses a fully-generative probabilistic model of our SMRT Sequencing process to polish consensus sequences to high accuracy. With CCS2, we are able to achieve a per-read empirical quality of QV30 (99.9% accuracy) at 19X coverage. A total of ~5000 1.3 kb consensus sequences with a collective empirical quality of ~QV40 (99.99%) were obtained for each sample. We demonstrate a 0% miscall rate in both unmixed control samples, and estimate a 48:52 frequency for the K103N mutation in the mixed (50:50) plasmid sample, consistent with data produced by orthogonal platforms. Additionally, the K103N escape variant was only detected in proviral samples from time points subsequent (19%) to the emergence of drug resistant viremia. This tool might be used to monitor the HIV reservoir for stable evolutionary changes throughout infection.


April 21, 2020  |  

The replication-competent HIV-1 latent reservoir is primarily established near the time of therapy initiation.

Although antiretroviral therapy (ART) is highly effective at suppressing HIV-1 replication, the virus persists as a latent reservoir in resting CD4+ T cells during therapy. This reservoir forms even when ART is initiated early after infection, but the dynamics of its formation are largely unknown. The viral reservoirs of individuals who initiate ART during chronic infection are generally larger and genetically more diverse than those of individuals who initiate therapy during acute infection, consistent with the hypothesis that the reservoir is formed continuously throughout untreated infection. To determine when viruses enter the latent reservoir, we compared sequences of replication-competent viruses from resting peripheral CD4+ T cells from nine HIV-positive women on therapy to viral sequences circulating in blood collected longitudinally before therapy. We found that, on average, 71% of the unique viruses induced from the post-therapy latent reservoir were most genetically similar to viruses replicating just before ART initiation. This proportion is far greater than would be expected if the reservoir formed continuously and was always long lived. We conclude that ART alters the host environment in a way that allows the formation or stabilization of most of the long-lived latent HIV-1 reservoir, which points to new strategies targeted at limiting the formation of the reservoir around the time of therapy initiation.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


April 21, 2020  |  

A Highly Unusual V1 Region of Env in an Elite Controller of HIV Infection.

HIV elite controllers represent a remarkable minority of patients who maintain normal CD4+ T-cell counts and low or undetectable viral loads for decades in the absence of antiretroviral therapy. To examine the possible contribution of virus attenuation to elite control, we obtained a primary HIV-1 isolate from an elite controller who had been infected for 19?years, the last 10 of which were in the absence of antiretroviral therapy. Full-length sequencing of this isolate revealed a highly unusual V1 domain in Envelope (Env). The V1 domain in this HIV-1 strain was 49 amino acids, placing it in the top 1% of lengths among the 6,112 Env sequences in the Los Alamos National Laboratory online database. Furthermore, it included two additional N-glycosylation sites and a pair of cysteines suggestive of an extra disulfide loop. Virus with this Env retained good infectivity and replicative capacity; however, analysis of recombinant viruses suggested that other sequences in Env were adapted to accommodate the unusual V1 domain. While the long V1 domain did not confer resistance to neutralization by monoclonal antibodies of the V1/V2-glycan-dependent class, it did confer resistance to neutralization by monoclonal antibodies of the V3-glycan-dependent class. Our findings support results in the literature that suggest a role for long V1 regions in shielding HIV-1 from recognition by V3-directed broadly neutralizing antibodies. In the case of the elite controller described here, it seems likely that selective pressures from the humoral immune system were responsible for driving the highly unusual polymorphisms present in this HIV-1 Envelope.IMPORTANCE Elite controllers have long provided an avenue for researchers to reveal mechanisms underlying control of HIV-1. While the role of host genetic factors in facilitating elite control is well known, the possibility of infection by attenuated strains of HIV-1 has been much less studied. Here we describe an unusual viral feature found in an elite controller of HIV-1 infection and demonstrate its role in conferring escape from monoclonal antibodies of the V3-glycan class. Our results suggest that extreme variation may be needed by HIV-1 to escape neutralization by some antibody specificities. Copyright © 2019 Silver et al.


April 21, 2020  |  

Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-infection Estimation towards Enhanced Vaccine Efficacy Assessment.

Knowledge of the time of HIV-1 infection and the multiplicity of viruses that establish HIV-1 infection is crucial for the in-depth analysis of clinical prevention efficacy trial outcomes. Better estimation methods would improve the ability to characterize immunological and genetic sequence correlates of efficacy within preventive efficacy trials of HIV-1 vaccines and monoclonal antibodies. We developed new methods for infection timing and multiplicity estimation using maximum likelihood estimators that shift and scale (calibrate) estimates by fitting true infection times and founder virus multiplicities to a linear regression model with independent variables defined by data on HIV-1 sequences, viral load, diagnostics, and sequence alignment statistics. Using Poisson models of measured mutation counts and phylogenetic trees, we analyzed longitudinal HIV-1 sequence data together with diagnostic and viral load data from the RV217 and CAPRISA 002 acute HIV-1 infection cohort studies. We used leave-one-out cross validation to evaluate the prediction error of these calibrated estimators versus that of existing estimators and found that both infection time and founder multiplicity can be estimated with improved accuracy and precision by calibration. Calibration considerably improved all estimators of time since HIV-1 infection, in terms of reducing bias to near zero and reducing root mean squared error (RMSE) to 5-10 days for sequences collected 1-2 months after infection. The calibration of multiplicity assessments yielded strong improvements with accurate predictions (ROC-AUC above 0.85) in all cases. These results have not yet been validated on external data, and the best-fitting models are likely to be less robust than simpler models to variation in sequencing conditions. For all evaluated models, these results demonstrate the value of calibration for improved estimation of founder multiplicity and of time since HIV-1 infection.


April 21, 2020  |  

CD8 T cells targeting adapted epitopes in chronic HIV infection promote dendritic cell maturation and CD4 T cell trans-infection.

HIV-1 frequently escapes from CD8 T cell responses via HLA-I restricted adaptation, leading to the accumulation of adapted epitopes (AE). We previously demonstrated that AE compromise CD8 T cell responses during acute infection and are associated with poor clinical outcomes. Here, we examined the impact of AE on CD8 T cell responses and their biological relevance in chronic HIV infection (CHI). In contrast to acute infection, the majority of AE are immunogenic in CHI. Longitudinal analyses from acute to CHI showed an increased frequency and magnitude of AE-specific IFN? responses compared to NAE-specific ones. These AE-specific CD8 T cells also were more cytotoxic to CD4 T cells. In addition, AE-specific CD8 T cells expressed lower levels of PD1 and CD57, as well as higher levels of CD28, suggesting a more activated and less exhausted phenotype. During CHI, viral sequencing identified AE-encoding strains as the dominant quasispecies. Despite increased CD4 T cell cytotoxicity, CD8 T cells responding to AE promoted dendritic cell (DC) maturation and CD4 T cell trans-infection perhaps explaining why AE are predominant in CHI. Taken together, our data suggests that the emergence of AE-specific CD8 T cell responses in CHI confers a selective advantage to the virus by promoting DC-mediated CD4 T cell trans-infection.


April 21, 2020  |  

Current advances in HIV vaccine preclinical studies using Macaque models.

The macaque simian or simian/human immunodeficiency virus (SIV/SHIV) challenge model has been widely used to inform and guide human vaccine trials. Substantial advances have been made recently in the application of repeated-low-dose challenge (RLD) approach to assess SIV/SHIV vaccine efficacies (VE). Some candidate HIV vaccines have shown protective effects in preclinical studies using the macaque SIV/SHIV model but the model’s true predictive value for screening potential HIV vaccine candidates needs to be evaluated further. Here, we review key parameters used in the RLD approach and discuss their relevance for evaluating VE to improve preclinical studies of candidate HIV vaccines.Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Vaccine-induced protection from homologous tier 2 SHIV challenge in nonhuman primates depends on serum-neutralizing antibody titers.

Passive administration of HIV neutralizing antibodies (nAbs) can protect macaques from hard-to-neutralize (tier 2) chimeric simian-human immunodeficiency virus (SHIV) challenge. However, conditions for nAb-mediated protection after vaccination have not been established. Here, we selected groups of 6 rhesus macaques with either high or low serum nAb titers from a total of 78 animals immunized with recombinant native-like (SOSIP) Env trimers. Repeat intrarectal challenge with homologous tier 2 SHIVBG505 led to rapid infection in unimmunized and low-titer animals. High-titer animals, however, demonstrated protection that was gradually lost as nAb titers waned over time. An autologous serum ID50 nAb titer of ~1:500 afforded more than 90% protection from medium-dose SHIV infection. In contrast, antibody-dependent cellular cytotoxicity and T cell activity did not correlate with protection. Therefore, Env protein-based vaccination strategies can protect against hard-to-neutralize SHIV challenge in rhesus macaques by inducing tier 2 nAbs, provided appropriate neutralizing titers can be reached and maintained. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

Rapid and Focused Maturation of a VRC01-Class HIV Broadly Neutralizing Antibody Lineage Involves Both Binding and Accommodation of the N276-Glycan.

The VH1-2 restricted VRC01-class of antibodies targeting the HIV envelope CD4 binding site are a major focus of HIV vaccine strategies. However, a detailed analysis of VRC01-class antibody development has been limited by the rare nature of these responses during natural infection and the lack of longitudinal sampling of such responses. To inform vaccine strategies, we mapped the development of a VRC01-class antibody lineage (PCIN63) in the subtype C infected IAVI Protocol C neutralizer PC063. PCIN63 monoclonal antibodies had the hallmark VRC01-class features and demonstrated neutralization breadth similar to the prototype VRC01 antibody, but were 2- to 3-fold less mutated. Maturation occurred rapidly within ~24 months of emergence of the lineage and somatic hypermutations accumulated at key contact residues. This longitudinal study of broadly neutralizing VRC01-class antibody lineage reveals early binding to the N276-glycan during affinity maturation, which may have implications for vaccine design.Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.