Menu
July 19, 2019  |  

Genome rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast.

Hybrid sterility is one of the earliest postzygotic isolating mechanisms to evolve between two recently diverged species. Here we identify causes underlying hybrid infertility of two recently diverged fission yeast species Schizosaccharomyces pombe and S. kambucha, which mate to form viable hybrid diploids that efficiently complete meiosis, but generate few viable gametes. We find that chromosomal rearrangements and related recombination defects are major but not sole causes of hybrid infertility. At least three distinct meiotic drive alleles, one on each S. kambucha chromosome, independently contribute to hybrid infertility by causing nonrandom spore death. Two of these driving loci are linked by a chromosomal translocation and thus constitute a novel type of paired meiotic drive complex. Our study reveals how quickly multiple barriers to fertility can arise. In addition, it provides further support for models in which genetic conflicts, such as those caused by meiotic drive alleles, can drive speciation.DOI: http://dx.doi.org/10.7554/eLife.02630.001. Copyright © 2014, Zanders et al.


July 19, 2019  |  

Polymorphic microsatellite markers for a wind-dispersed tropical tree species, Triplaris cumingiana (Polygonaceae).

Novel microsatellite markers were characterized in the wind-dispersed and dioecious neotropical tree Triplaris cumingiana (Polygonaceae) for use in understanding the ecological processes and genetic impacts of pollen- and seed-mediated gene flow in tropical forests. •Sixty-two microsatellite primer pairs were screened, from which 12 markers showing five or more alleles per locus (range 5-17) were tested on 47 individuals. Observed and expected heterozygosities averaged 0.692 and 0.731, respectively. Polymorphism information content was between 0.417 and 0.874. Linkage disequilibrium was observed in one of the 66 pairwise comparisons between loci. Two loci showed deviation from Hardy-Weinberg equilibrium. An additional 14 markers exhibiting lower polymorphism were characterized on a smaller number of individuals. •These microsatellite markers have high levels of polymorphism and reproducibility and will be useful in studying gene flow and population structure in T. cumingiana.


July 19, 2019  |  

Progress, challenges and the future of crop genomes.

The availability of plant reference genomes has ushered in a new era of crop genomics. More than 100 plant genomes have been sequenced since 2000, 63% of which are crop species. These genome sequences provide insight into architecture, evolution and novel aspects of crop genomes such as the retention of key agronomic traits after whole genome duplication events. Some crops have very large, polyploid, repeat-rich genomes, which require innovative strategies for sequencing, assembly and analysis. Even low quality reference genomes have the potential to improve crop germplasm through genome-wide molecular markers, which decrease expensive phenotyping and breeding cycles. The next stage of plant genomics will require draft genome refinement, building resources for crop wild relatives, resequencing broad diversity panels, and plant ENCODE projects to better understand the complexities of these highly diverse genomes. Copyright © 2015 Elsevier Ltd. All rights reserved.


July 19, 2019  |  

HLA typing for the next generation.

Allele-level resolution data at primary HLA typing is the ideal for most histocompatibility testing laboratories. Many high-throughput molecular HLA typing approaches are unable to determine the phase of observed DNA sequence polymorphisms, leading to ambiguous results. The use of higher resolution methods is often restricted due to cost and time limitations. Here we report on the feasibility of using Pacific Biosciences’ Single Molecule Real-Time (SMRT) DNA sequencing technology for high-resolution and high-throughput HLA typing. Seven DNA samples were typed for HLA-A, -B and -C. The results showed that SMRT DNA sequencing technology was able to generate sequences that spanned entire HLA Class I genes that allowed for accurate allele calling. Eight novel genomic HLA class I sequences were identified, four were novel alleles, three were confirmed as genomic sequence extensions and one corrected an existing genomic reference sequence. This method has the potential to revolutionize the field of HLA typing. The clinical impact of achieving this level of resolution HLA typing data is likely to considerable, particularly in applications such as organ and blood stem cell transplantation where matching donors and recipients for their HLA is of utmost importance.


July 19, 2019  |  

Chaos of rearrangements in the mating-type chromosomes of the anther-smut fungus Microbotryum lychnidis-dioicae.

Sex chromosomes in plants and animals and fungal mating-type chromosomes often show exceptional genome features, with extensive suppression of homologous recombination and cytological differentiation between members of the diploid chromosome pair. Despite strong interest in the genetics of these chromosomes, their large regions of suppressed recombination often are enriched in transposable elements and therefore can be challenging to assemble. Here we show that the latest improvements of the PacBio sequencing yield assembly of the whole genome of the anther-smut fungus, Microbotryum lychnidis-dioicae (the pathogenic fungus causing anther-smut disease of Silene latifolia), into finished chromosomes or chromosome arms, even for the repeat-rich mating-type chromosomes and centromeres. Suppressed recombination of the mating-type chromosomes is revealed to span nearly 90% of their lengths, with extreme levels of rearrangements, transposable element accumulation, and differentiation between the two mating types. We observed no correlation between allelic divergence and physical position in the nonrecombining regions of the mating-type chromosomes. This may result from gene conversion or from rearrangements of ancient evolutionary strata, i.e., successive steps of suppressed recombination. Centromeres were found to be composed mainly of copia-like transposable elements and to possess specific minisatellite repeats identical between the different chromosomes. We also identified subtelomeric motifs. In addition, extensive signs of degeneration were detected in the nonrecombining regions in the form of transposable element accumulation and of hundreds of gene losses on each mating-type chromosome. Furthermore, our study highlights the potential of the latest breakthrough PacBio chemistry to resolve complex genome architectures. Copyright © 2015 by the Genetics Society of America.


July 19, 2019  |  

Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution.

The Heliconius butterflies are a widely studied adaptive radiation of 46 species spread across Central and South America, several of which are known to hybridize in the wild. Here, we present a substantially improved assembly of the Heliconius melpomene genome, developed using novel methods that should be applicable to improving other genome assemblies produced using short read sequencing. First, we whole-genome-sequenced a pedigree to produce a linkage map incorporating 99% of the genome. Second, we incorporated haplotype scaffolds extensively to produce a more complete haploid version of the draft genome. Third, we incorporated ~20x coverage of Pacific Biosciences sequencing, and scaffolded the haploid genome using an assembly of this long-read sequence. These improvements result in a genome of 795 scaffolds, 275 Mb in length, with an N50 length of 2.1 Mb, an N50 number of 34, and with 99% of the genome placed, and 84% anchored on chromosomes. We use the new genome assembly to confirm that the Heliconius genome underwent 10 chromosome fusions since the split with its sister genus Eueides, over a period of about 6 million yr. Copyright © 2016 Davey et al.


July 19, 2019  |  

How Single Molecule Real-Time Sequencing and haplotype phasing have enabled reference-grade diploid genome assembly of wine grapes.

Domesticated grapevines (Vitis vinifera) have relatively small genomes of about 500 Mb (Lodhi and Reisch, 1995; Jaillon et al., 2007; Velasco et al., 2007), which is similar to other small-genomes species like rice (430 Mb; Goff et al., 2002), medicago (500 Mb; Tang et al., 2014), and poplar (465 Mb; Tuskan et al., 2006). Despite their small genome size, the sequencing and assembling of grapevine genomes is difficult because of high levels of heterozygosity. The high heterozygosity in domesticated grapes may be due, in part, to their domestication from an obligately outcrossing, dioecious wild progenitor. Domesticated grapes can be selfed, in theory, because their mating system transitioned to hermaphroditic, self-fertile flowers during domestication. In practice, however, selfed progeny tend to be non-viable, presumably due to a high deleterious recessive load and resulting inbreeding depression. As a consequence of these fitness effects, most grape cultivars are crosses between distantly related parents (Strefeler et al., 1992; Ohmi et al., 1993; Bowers and Meredith, 1997; Sefc et al., 1998; Lopes et al., 1999; Di Gaspero et al., 2005; Tapia et al., 2007; Ibáñez et al., 2009; Cipriani et al., 2010; Myles et al., 2011; Lacombe et al., 2013).


July 7, 2019  |  

The draft genome of Primula veris yields insights into the molecular basis of heterostyly.

The flowering plant Primula veris is a common spring blooming perennial that is widely cultivated throughout Europe. This species is an established model system in the study of the genetics, evolution, and ecology of heterostylous floral polymorphisms. Despite the long history of research focused on this and related species, the continued development of this system has been restricted due the absence of genomic and transcriptomic resources.We present here a de novo draft genome assembly of P. veris covering 301.8 Mb, or approximately 63% of the estimated 479.22 Mb genome, with an N50 contig size of 9.5 Kb, an N50 scaffold size of 164 Kb, and containing an estimated 19,507 genes. The results of a RADseq bulk segregant analysis allow for the confident identification of four genome scaffolds that are linked to the P. veris S-locus. RNAseq data from both P. veris and the closely related species P. vulgaris allow for the characterization of 113 candidate heterostyly genes that show significant floral morph-specific differential expression. One candidate gene of particular interest is a duplicated GLOBOSA homolog that may be unique to Primula (PveGLO2), and is completely silenced in L-morph flowers.The P. veris genome represents the first genome assembled from a heterostylous species, and thus provides an immensely important resource for future studies focused on the evolution and genetic dissection of heterostyly. As the first genome assembled from the Primulaceae, the P. veris genome will also facilitate the expanded application of phylogenomic methods in this diverse family and the eudicots as a whole.


July 7, 2019  |  

The genome of Dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb.

Dendrobium officinale Kimura et Migo is a traditional Chinese orchid herb that has both ornamental value and a broad range of therapeutic effects. Here, we report the first de novo assembled 1.35 Gb genome sequences for D. officinale by combining the second-generation Illumina Hiseq 2000 and third-generation PacBio sequencing technologies. We found that orchids have a complete inflorescence gene set and have some specific inflorescence genes. We observed gene expansion in gene families related to fungus symbiosis and drought resistance. We analyzed biosynthesis pathways of medicinal components of D. officinale and found extensive duplication of SPS and SuSy genes, which are related to polysaccharide generation, and that the pathway of D. officinale alkaloid synthesis could be extended to generate 16-epivellosimine. The D. officinale genome assembly demonstrates a new approach to deciphering large complex genomes and, as an important orchid species and a traditional Chinese medicine, the D. officinale genome will facilitate future research on the evolution of orchid plants, as well as the study of medicinal components and potential genetic breeding of the dendrobe. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

BreakSeek: a breakpoint-based algorithm for full spectral range INDEL detection.

Although recent developed algorithms have integrated multiple signals to improve sensitivity for insertion and deletion (INDEL) detection, they are far from being perfect and still have great limitations in detecting a full size range of INDELs. Here we present BreakSeek, a novel breakpoint-based algorithm, which can unbiasedly and efficiently detect both homozygous and heterozygous INDELs, ranging from several base pairs to over thousands of base pairs, with accurate breakpoint and heterozygosity rate estimations. Comprehensive evaluations on both simulated and real datasets revealed that BreakSeek outperformed other existing methods on both sensitivity and specificity in detecting both small and large INDELs, and uncovered a significant amount of novel INDELs that were missed before. In addition, by incorporating sophisticated statistic models, we for the first time investigated and demonstrated the importance of handling false and conflicting signals for multi-signal integrated methods.© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.


July 7, 2019  |  

Chromosomal rearrangements as barriers to genetic homogenization between archaic and modern humans.

Chromosomal rearrangements, which shuffle DNA throughout the genome, are an important source of divergence across taxa. Using a paired-end read approach with Illumina sequence data for archaic humans, I identify changes in genome structure that occurred recently in human evolution. Hundreds of rearrangements indicate genomic trafficking between the sex chromosomes and autosomes, raising the possibility of sex-specific changes. Additionally, genes adjacent to genome structure changes in Neanderthals are associated with testis-specific expression, consistent with evolutionary theory that new genes commonly form with expression in the testes. I identify one case of new-gene creation through transposition from the Y chromosome to chromosome 10 that combines the 5′-end of the testis-specific gene Fank1 with previously untranscribed sequence. This new transcript experienced copy number expansion in archaic genomes, indicating rapid genomic change. Among rearrangements identified in Neanderthals, 13% are transposition of selfish genetic elements, whereas 32% appear to be ectopic exchange between repeats. In Denisovan, the pattern is similar but numbers are significantly higher with 18% of rearrangements reflecting transposition and 40% ectopic exchange between distantly related repeats. There is an excess of divergent rearrangements relative to polymorphism in Denisovan, which might result from nonuniform rates of mutation, possibly reflecting a burst of transposable element activity in the lineage that led to Denisovan. Finally, loci containing genome structure changes show diminished rates of introgression from Neanderthals into modern humans, consistent with the hypothesis that rearrangements serve as barriers to gene flow during hybridization. Together, these results suggest that this previously unidentified source of genomic variation has important biological consequences in human evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis.

Cerebral cavernous malformations (CCMs) are vascular lesions affecting the central nervous system. CCM occurs either sporadically or in an inherited, autosomal dominant manner. Constitutional (germline) mutations in any of three genes, KRIT1, CCM2 and PDCD10, can cause the inherited form. Analysis of CCM lesions from inherited cases revealed biallelic somatic mutations, indicating that CCM follows a Knudsonian two-hit mutation mechanism. It is still unknown, however, if the sporadic cases of CCM also follow this genetic mechanism. We extracted DNA from 11 surgically excised lesions from sporadic CCM patients, and sequenced the three CCM genes in each specimen using a next-generation sequencing approach. Four sporadic CCM lesion samples (36%) were found to contain novel somatic mutations. Three of the lesions contained a single somatic mutation, and one lesion contained two biallelic somatic mutations. Herein, we also describe evidence of somatic mosaicism in a patient presenting with over 130 CCM lesions localized to one hemisphere of the brain. Finally, in a lesion regrowth sample, we found that the regrown CCM lesion contained the same somatic mutation as the original lesion. Together, these data bolster the idea that all forms of CCM have a genetic underpinning of the two-hit mutation mechanism in the known CCM genes. Recent studies have found aberrant Rho kinase activation in inherited CCM pathogenesis, and we present evidence that this pathway is activated in sporadic CCM patients. These results suggest that all CCM patients, including those with the more common sporadic form, are potentially amenable to the same therapy. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.


July 7, 2019  |  

Dubowitz syndrome is a complex comprised of multiple, genetically distinct and phenotypically overlapping disorders.

Dubowitz syndrome is a rare disorder characterized by multiple congenital anomalies, cognitive delay, growth failure, an immune defect, and an increased risk of blood dyscrasia and malignancy. There is considerable phenotypic variability, suggesting genetic heterogeneity. We clinically characterized and performed exome sequencing and high-density array SNP genotyping on three individuals with Dubowitz syndrome, including a pair of previously-described siblings (Patients 1 and 2, brother and sister) and an unpublished patient (Patient 3). Given the siblings’ history of bone marrow abnormalities, we also evaluated telomere length and performed radiosensitivity assays. In the siblings, exome sequencing identified compound heterozygosity for a known rare nonsense substitution in the nuclear ligase gene LIG4 (rs104894419, NM_002312.3:c.2440C>T) that predicts p.Arg814X (MAF:0.0002) and an NM_002312.3:c.613delT variant that predicts a p.Ser205Leufs*29 frameshift. The frameshift mutation has not been reported in 1000 Genomes, ESP, or ClinSeq. These LIG4 mutations were previously reported in the sibling sister; her brother had not been previously tested. Western blotting showed an absence of a ligase IV band in both siblings. In the third patient, array SNP genotyping revealed a de novo ~ 3.89 Mb interstitial deletion at chromosome 17q24.2 (chr 17:62,068,463-65,963,102, hg18), which spanned the known Carney complex gene PRKAR1A. In all three patients, a median lymphocyte telomere length of = 1st centile was observed and radiosensitivity assays showed increased sensitivity to ionizing radiation. Our work suggests that, in addition to dyskeratosis congenita, LIG4 and 17q24.2 syndromes also feature shortened telomeres; to confirm this, telomere length testing should be considered in both disorders. Taken together, our work and other reports on Dubowitz syndrome, as currently recognized, suggest that it is not a unitary entity but instead a collection of phenotypically similar disorders. As a clinical entity, Dubowitz syndrome will need continual re-evaluation and re-definition as its constituent phenotypes are determined.


July 7, 2019  |  

The characterization of goat genetic diversity: Towards a genomic approach

The investigation of genetic diversity at molecular level has been proposed as a valuable complement and sometimes proxy to phenotypic diversity of local breeds and is presently considered as one of the FAO priorities for breed characterization. By recommending a set of selected molecular markers for each of the main livestock species, FAO has promoted the meta-analysis of local datasets, to achieve a global view of molecular genetic diversity. Analysis within the EU Globaldiv project of two large goat microsatellite datasets produced by the Econogene Consortium and the IAEA CRP–Asia Consortium, respectively, has generated a picture of goat diversity across continents. This indicates a gradient of decreasing diversity from the domestication centre towards Europe and Asia, a clear phylogeographic structure at the continental and regional levels, and in Asia a limited genetic differentiation among local breeds. The development of SNP panels that assay thousands of markers and the whole genome sequencing of livestock permit an affordable use of genomic technologies in all livestock species, goats included. Preliminary data from the Italian Goat Consortium indicate that the SNP panel developed for this species is highly informative. The existing panel can be improved by integrating additional SNPs identified from the whole genome sequence alignment of goats adapted to extreme climates. Part of this effort is being achieved by international projects (e.g. EU FP7 NextGen and 3SR projects), but a fair representation of the global diversity in goats requires a large panel of samples (i.e. as in the recently launched 1000 cattle genomes initiative). Genomic technologies offer new strategies to investigate complex traits difficult to measure. For example, the comparison of patterns of diversity among the genomes in selected groups of animals (e.g. adapted to different environments) and the integration of genome-wide diversity with new GIScience-based methods are able to identify molecular markers associated with genomic regions of putative importance in adaptation and thus pave the way for the identification of causative genes. Goat breeds adapted to different production systems in extreme and harsh environments will play an important role in this process. The new sequencing technologies also permit the analysis of the entire mitochondrial genome at maximum resolution. The complete mtDNA sequence is now the common standard format for the investigation of human maternal lineages. A preliminary analysis of the complete goat mtDNA genome supports a single Neolithic origin of domestic goats rather than multiple domestication events in different geographic areas.


July 7, 2019  |  

In transition: primate genomics at a time of rapid change.

The field of nonhuman primate genomics is undergoing rapid change and making impressive progress. Exploiting new technologies for DNA sequencing, researchers have generated new whole-genome sequence assemblies for multiple primate species over the past 6 years. In addition, investigations of within-species genetic variation, gene expression and RNA sequences, conservation of non-protein-coding regions of the genome, and other aspects of comparative genomics are moving at an accelerating speed. This progress is opening a wide array of new research opportunities in the analysis of comparative primate genome content and evolution. It also creates new possibilities for the use of nonhuman primates as model organisms in biomedical research. This transition, based on both new technology and the new information being generated in regard to human genetics, provides an important justification for reevaluating the research goals, strategies, and study designs used in primate genetics and genomics.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.