Menu
July 7, 2019  |  

Taxonomic resolution of the nematophagous fungal isolate ARF18 via genome sequencing.

The taxonomically uncharacterized nematophagous fungus ARF18, which parasitizes cysts, juveniles, and adults of the soybean cyst nematode (Heterodera glycines), was proposed as a nematode biological control agent in 1991. A 46.3-Mb draft genome sequence of this fungus is presented, and a tentative taxonomic identification as a novel species of Brachyphoris is proposed. Copyright © 2017 Sharma et al.


July 7, 2019  |  

Glycolytic functions are conserved in the genome of the wine yeast Hanseniaspora uvarum, and pyruvate kinase limits its capacity for alcoholic fermentation.

Hanseniaspora uvarum (anamorph Kloeckera apiculata) is a predominant yeast on wine grapes and other fruits and has a strong influence on wine quality, even when Saccharomyces cerevisiae starter cultures are employed. In this work, we sequenced and annotated approximately 93% of the H. uvarum genome. Southern and synteny analyses were employed to construct a map of the seven chromosomes present in a type strain. Comparative determinations of specific enzyme activities within the fermentative pathway in H. uvarum and S. cerevisiae indicated that the reduced capacity of the former yeast for ethanol production is caused primarily by an ~10-fold-lower activity of the key glycolytic enzyme pyruvate kinase. The heterologous expression of the encoding gene, H. uvarumPYK1 (HuPYK1), and two genes encoding the phosphofructokinase subunits, HuPFK1 and HuPFK2, in the respective deletion mutants of S. cerevisiae confirmed their functional homology.IMPORTANCEHanseniaspora uvarum is a predominant yeast species on grapes and other fruits. It contributes significantly to the production of desired as well as unfavorable aroma compounds and thus determines the quality of the final product, especially wine. Despite this obvious importance, knowledge on its genetics is scarce. As a basis for targeted metabolic modifications, here we provide the results of a genomic sequencing approach, including the annotation of 3,010 protein-encoding genes, e.g., those encoding the entire sugar fermentation pathway, key components of stress response signaling pathways, and enzymes catalyzing the production of aroma compounds. Comparative analyses suggest that the low fermentative capacity of H. uvarum compared to that of Saccharomyces cerevisiae can be attributed to low pyruvate kinase activity. The data reported here are expected to aid in establishing H. uvarum as a non-Saccharomyces yeast in starter cultures for wine and cider fermentations. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Draft genome sequence of Aspergillus persii NIBRFGC000004109, which has antibacterial activity against plant-pathogenic bacteria.

The fungus Aspergillus persii strain NIBRFGC000004109 is capable of producing penicillic acid and showed antibacterial activity against various plant-pathogenic bacteria, including Xanthomonas arboricola pv. pruni. Here, we report the first draft whole-genome sequence of A. persii The assembly comprises 38,414,373 bp, with 12 scaffolds. Copyright © 2017 Kim et al.


July 7, 2019  |  

Genome sequencing and comparative genomics reveal the potential pathogenic mechanism of Cercospora sojina Hara on soybean.

Frogeye leaf spot, caused by Cercospora sojina Hara, is a common disease of soybean in most soybean-growing countries of the world. In this study, we report a high-quality genome sequence of C. sojina by Single Molecule Real-Time sequencing method. The 40.8-Mb genome encodes 11,655 predicated genes, and 8,474 genes are revealed by RNA sequencing. Cercospora sojina genome contains large numbers of gene clusters that are involved in synthesis of secondary metabolites, including mycotoxins and pigments. However, much less carbohydrate-binding module protein encoding genes are identified in C. sojina genome, when compared with other phytopathogenic fungi. Bioinformatics analysis reveals that C. sojina harbours about 752 secreted proteins, and 233 of them are effectors. During early infection, the genes for metabolite biosynthesis and effectors are significantly enriched, suggesting that they may play essential roles in pathogenicity. We further identify 13 effectors that can inhibit BAX-induced cell death. Taken together, our results provide insights into the infection mechanisms of C. sojina on soybean.© The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


July 7, 2019  |  

Genome sequence of the white-rot fungus Irpex lacteus F17, a type strain of lignin degrader fungus.

Irpex lacteus, a cosmopolitan white-rot fungus, degrades lignin and lignin-derived aromatic compounds. In this study, we report the high-quality draft genome sequence of I. lacteus F17, isolated from a decaying hardwood tree in the vicinity of Hefei, China. The genome is 44,362,654 bp, with a GC content of 49.64% and a total of 10,391 predicted protein-coding genes. In addition, a total of 18 snRNA, 842 tRNA, 15 rRNA operons and 11,710 repetitive sequences were also identified. The genomic data provides insights into the mechanisms of the efficient lignin decomposition of this strain.


July 7, 2019  |  

Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition.

Most land plants live in association with arbuscular mycorrhizal (AM) fungi and rely on this symbiosis to scavenge phosphorus (P) from soil. The ability to establish this partnership has been lost in some plant lineages like the Brassicaceae, which raises the question of what alternative nutrition strategies such plants have to grow in P-impoverished soils. To understand the contribution of plant-microbiota interactions, we studied the root-associated fungal microbiome of Arabis alpina (Brassicaceae) with the hypothesis that some of its components can promote plant P acquisition. Using amplicon sequencing of the fungal internal transcribed spacer 2, we studied the root and rhizosphere fungal communities of A. alpina growing under natural and controlled conditions including low-P soils and identified a set of 15 fungal taxa consistently detected in its roots. This cohort included a Helotiales taxon exhibiting high abundance in roots of wild A. alpina growing in an extremely P-limited soil. Consequently, we isolated and subsequently reintroduced a specimen from this taxon into its native P-poor soil in which it improved plant growth and P uptake. The fungus exhibited mycorrhiza-like traits including colonization of the root endosphere and P transfer to the plant. Genome analysis revealed a link between its endophytic lifestyle and the expansion of its repertoire of carbohydrate-active enzymes. We report the discovery of a plant-fungus interaction facilitating the growth of a nonmycorrhizal plant under native P-limited conditions, thus uncovering a previously underestimated role of root fungal microbiota in P cycling.


July 7, 2019  |  

Draft genome sequences of Trichophyton rubrum CMCC(F)T1i and Trichophyton violaceum CMCC(F)T3l by Illumina 2000 and Pacific Biosciences.

One strain of Trichophyton rubrum CMCC(F)T1i (=CBS 139224) isolated from onychomycosis and one strain of Trichophyton violaceum CMCC(F)T3l (=CBS 141829) isolated from tinea capitis in China were whole-genome sequenced by Illumina/Solexa, while the former was also sequenced by Pacific Biosciences sequencing in parallel. Copyright © 2017 Zhan et al.


July 7, 2019  |  

Tryptorubin A: A polycyclic peptide from a fungus-derived Streptomycete.

Fungus-growing ants engage in complex symbiotic relationships with their fungal crop, specialized fungal pathogens, and bacteria that provide chemical defenses. In an effort to understand the evolutionary origins of this multilateral system, we investigated bacteria isolated from fungi. One bacterial strain (Streptomyces sp. CLI2509) from the bracket fungus Hymenochaete rubiginosa, produced an unusual peptide, tryptorubin A, which contains heteroaromatic links between side chains that give it a rigid polycyclic globular structure. The three-dimensional structure was determined by NMR and MS, including a (13)C-(13)C COSY of isotopically enriched material, degradation, derivatives, and computer modeling. Whole genome sequencing identified a likely pair of biosynthetic genes responsible for tryptorubin A’s linear hexapeptide backbone. The genome also revealed the close relationship between CLI2509 and Streptomyces sp. SPB78, which was previously implicated in an insect-bacterium symbiosis.


July 7, 2019  |  

Complete mitochondrial genome sequence of Aspergillus oryzae RIB 127 and its comparative analysis with related species

Here, we determined the complete sequence and annotation of the mitochondrial genome of A. oryzae (strain RIB 127). The complete mitochondrial genome is 29,202 base pairs (bp), with low GC content of 26.2%. Conserved genes identified include 26 transfer RNAs, the small and large ribosomal RNA subunits, and 14 protein-coding genes. Phylogenetic analysis based on the complete mitochondrial genome revealed that RIB 127 formed a single clade with two other A. oryzae species.


July 7, 2019  |  

Comparative genomics of maize ear rot pathogens reveals expansion of carbohydrate-active enzymes and secondary metabolism backbone genes in Stenocarpella maydis.

Stenocarpella maydis is a plant pathogenic fungus that causes Diplodia ear rot, one of the most destructive diseases of maize. To date, little information is available regarding the molecular basis of pathogenesis in this organism, in part due to limited genomic resources. In this study, a 54.8 Mb draft genome assembly of S. maydis was obtained with Illumina and PacBio sequencing technologies, and analyzed. Comparative genomic analyses with the predominant maize ear rot pathogens Aspergillus flavus, Fusarium verticillioides, and Fusarium graminearum revealed an expanded set of carbohydrate-active enzymes for cellulose and hemicellulose degradation in S. maydis. Analyses of predicted genes involved in starch degradation revealed six putative a-amylases, four extracellular and two intracellular, and two putative ?-amylases, one of which appears to have been acquired from bacteria via horizontal transfer. Additionally, 87 backbone genes involved in secondary metabolism were identified, which represents one of the largest known assemblages among Pezizomycotina species. Numerous secondary metabolite gene clusters were identified, including two clusters likely involved in the biosynthesis of diplodiatoxin and chaetoglobosins. The draft genome of S. maydis presented here will serve as a useful resource for molecular genetics, functional genomics, and analyses of population diversity in this organism. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Harnessing whole genome sequencing in medical mycology.

Comparative genome sequencing studies of human fungal pathogens enable identification of genes and variants associated with virulence and drug resistance. This review describes current approaches, resources, and advances in applying whole genome sequencing to study clinically important fungal pathogens.Genomes for some important fungal pathogens were only recently assembled, revealing gene family expansions in many species and extreme gene loss in one obligate species. The scale and scope of species sequenced is rapidly expanding, leveraging technological advances to assemble and annotate genomes with higher precision. By using iteratively improved reference assemblies or those generated de novo for new species, recent studies have compared the sequence of isolates representing populations or clinical cohorts. Whole genome approaches provide the resolution necessary for comparison of closely related isolates, for example, in the analysis of outbreaks or sampled across time within a single host.Genomic analysis of fungal pathogens has enabled both basic research and diagnostic studies. The increased scale of sequencing can be applied across populations, and new metagenomic methods allow direct analysis of complex samples.


July 7, 2019  |  

Genome sequence of the lager-brewing yeast Saccharomyces sp. strain M14, used in the high-gravity brewing industry in China.

Lager-brewing yeasts are mainly used for the production of lager beers. Illumina and PacBio-based sequence analyses revealed an approximate genome size of 22.8 Mb, with a GC content of 38.98%, for the Chinese lager-brewing yeast Saccharomyces sp. strain M14. Based on ab initio prediction, 9,970 coding genes were annotated. Copyright © 2017 Liu et al.


July 7, 2019  |  

FKBP12-dependent inhibition of calcineurin mediates immunosuppressive antifungal drug action in Malassezia.

The genus Malassezia includes yeasts that are commonly found on the skin or hair of animals and humans as commensals and are associated with a number of skin disorders. We have previously developed an Agrobacterium tumefaciens transformation system effective for both targeted gene deletion and insertional mutagenesis in Malassezia furfur and M. sympodialis In the present study, these molecular resources were applied to characterize the immunophilin FKBP12 as the target of tacrolimus (FK506), ascomycin, and pimecrolimus, which are calcineurin inhibitors that are used as alternatives to corticosteroids in the treatment of inflammatory skin disorders such as those associated with Malassezia species. While M. furfur and M. sympodialis showed in vitro sensitivity to these agents, fkb1? mutants displayed full resistance to all three of them, confirming that FKBP12 is the target of these calcineurin inhibitors and is essential for their activity. We found that calcineurin inhibitors act additively with fluconazole through an FKBP12-dependent mechanism. Spontaneous M. sympodialis isolates resistant to calcineurin inhibitors had mutations in the gene encoding FKBP12 in regions predicted to affect the interactions between FKBP12 and FK506 based on structural modeling. Due to the presence of homopolymer nucleotide repeats in the gene encoding FKBP12, an msh2? hypermutator of M. sympodialis was engineered and exhibited an increase of more than 20-fold in the rate of emergence of resistance to FK506 compared to that of the wild-type strain, with the majority of the mutations found in these repeats.IMPORTANCEMalassezia species are the most abundant fungal components of the mammalian and human skin microbiome. Although they belong to the natural skin commensal flora of humans, they are also associated with a variety of clinical skin disorders. The standard treatment for Malassezia-associated inflammatory skin infections is topical corticosteroids, although their use has adverse side effects and is not recommended for long treatment periods. Calcineurin inhibitors have been proposed as a suitable alternative to treat patients affected by skin lesions caused by Malassezia Although calcineurin inhibitors are well-known as immunosuppressive drugs, they are also characterized by potent antimicrobial activity. In the present study, we investigated the mechanism of action of FK506 (tacrolimus), ascomycin (FK520), and pimecrolimus in M. furfur and M. sympodialis and found that the conserved immunophilin FKBP12 is the target of these drugs with which it forms a complex that directly binds calcineurin and inhibits its signaling activity. We found that FKBP12 is also required for the additive activity of calcineurin inhibitors with fluconazole. Furthermore, the increasing natural occurrence in fungal pathogen populations of mutator strains poses a high risk for the rapid emergence of drug resistance and adaptation to host defense. This led us to generate an engineered hypermutator msh2? mutant strain of M. sympodialis and genetically evaluate mutational events resulting in a substantially increased rate of resistance to FK506 compared to that of the wild type. Our study paves the way for the novel clinical use of calcineurin inhibitors with lower immunosuppressive activity that could be used clinically to treat a broad range of fungal infections, including skin disorders caused by Malassezia. Copyright © 2017 Ianiri et al.


July 7, 2019  |  

Large-scale suppression of recombination predates genomic rearrangements in Neurospora tetrasperma.

A common feature of eukaryote genomes is large chromosomal regions where recombination is absent or strongly reduced, but the factors that cause this reduction are not well understood. Genomic rearrangements have often been implicated, but they may also be a consequence of recombination suppression rather than a cause. In this study, we generate eight high-quality genomic data sets of the filamentous ascomycete Neurospora tetrasperma, a fungus that lacks recombination over most of its largest chromosome. The genomes surprisingly reveal collinearity of the non-recombining regions and although large inversions are enriched in these regions, we conclude these inversions to be derived and not the cause of the suppression. To our knowledge, this is the first time that non-recombining, genic regions as large as 86% of a full chromosome (or 8?Mbp), are shown to be collinear. These findings are of significant interest for our understanding of the evolution of sex chromosomes and other supergene complexes.


July 7, 2019  |  

Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria.

Armillaria species are both devastating forest pathogens and some of the largest terrestrial organisms on Earth. They forage for hosts and achieve immense colony sizes via rhizomorphs, root-like multicellular structures of clonal dispersal. Here, we sequenced and analysed the genomes of four Armillaria species and performed RNA sequencing and quantitative proteomic analysis on the invasive and reproductive developmental stages of A.?ostoyae. Comparison with 22 related fungi revealed a significant genome expansion in Armillaria, affecting several pathogenicity-related genes, lignocellulose-degrading enzymes and lineage-specific genes expressed during rhizomorph development. Rhizomorphs express an evolutionarily young transcriptome that shares features with the transcriptomes of both fruiting bodies and vegetative mycelia. Several genes show concomitant upregulation in rhizomorphs and fruiting bodies and share cis-regulatory signatures in their promoters, providing genetic and regulatory insights into complex multicellularity in fungi. Our results suggest that the evolution of the unique dispersal and pathogenicity mechanisms of Armillaria might have drawn upon ancestral genetic toolkits for wood-decay, morphogenesis and complex multicellularity.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.