Menu
July 7, 2019  |  

Mechanisms of surface antigenic variation in the human pathogenic fungus Pneumocystis jirovecii.

Microbial pathogens commonly escape the human immune system by varying surface proteins. We investigated the mechanisms used for that purpose by Pneumocystis jirovecii This uncultivable fungus is an obligate pulmonary pathogen that in immunocompromised individuals causes pneumonia, a major life-threatening infection. Long-read PacBio sequencing was used to assemble a core of subtelomeres of a single P. jirovecii strain from a bronchoalveolar lavage fluid specimen from a single patient. A total of 113 genes encoding surface proteins were identified, including 28 pseudogenes. These genes formed a subtelomeric gene superfamily, which included five families encoding adhesive glycosylphosphatidylinositol (GPI)-anchored glycoproteins and one family encoding excreted glycoproteins. Numerical analyses suggested that diversification of the glycoproteins relies on mosaic genes created by ectopic recombination and occurs only within each family. DNA motifs suggested that all genes are expressed independently, except those of the family encoding the most abundant surface glycoproteins, which are subject to mutually exclusive expression. PCR analyses showed that exchange of the expressed gene of the latter family occurs frequently, possibly favored by the location of the genes proximal to the telomere because this allows concomitant telomere exchange. Our observations suggest that (i) the P. jirovecii cell surface is made of a complex mixture of different surface proteins, with a majority of a single isoform of the most abundant glycoprotein, (ii) genetic mosaicism within each family ensures variation of the glycoproteins, and (iii) the strategy of the fungus consists of the continuous production of new subpopulations composed of cells that are antigenically different.IMPORTANCEPneumocystis jirovecii is a fungus causing severe pneumonia in immunocompromised individuals. It is the second most frequent life-threatening invasive fungal infection. We have studied the mechanisms of antigenic variation used by this pathogen to escape the human immune system, a strategy commonly used by pathogenic microorganisms. Using a new DNA sequencing technology generating long reads, we could characterize the highly repetitive gene families encoding the proteins that are present on the cellular surface of this pest. These gene families are localized in the regions close to the ends of all chromosomes, the subtelomeres. Such chromosomal localization was found to favor genetic recombinations between members of each gene family and to allow diversification of these proteins continuously over time. This pathogen seems to use a strategy of antigenic variation consisting of the continuous production of new subpopulations composed of cells that are antigenically different. Such a strategy is unique among human pathogens. Copyright © 2017 Schmid-Siegert et al.


July 7, 2019  |  

Draft genomes of the fungal pathogen Phellinus noxius in Hong Kong

The fungal pathogen Phellinus noxius is the underlying cause of brown root rot, a disease with causing tree mortality globally, causing extensive damage in urban areas and crop plants. This disease currently has no cure, and despite the global epidemic, little is known about the pathogenesis and virulence of this pathogen. Using Ion Torrent PGM, Illumina MiSeq and PacBio RSII sequencing platforms with various genome assembly methods, we produced the draft genome sequences of four P. noxius strains isolated from infected trees in Hong Kong to further understand the pathogen and identify the mechanisms behind the aggressive nature and virulence of this fungus. The resulting genomes ranged from 30.8Mb to 31.8Mb in size, and of the four sequences, the YTM97 strain was chosen to produce a high-quality Hong Kong strain genome sequence, resulting in a 31Mb final assembly with 457 scaffolds, an N50 length of 275,889 bp and 96.2% genome completeness. RNA-seq of YTM97 using Illumina HiSeq400 was performed for improved gene prediction. AUGUSTUS and Genemark-ES prediction programs predicted 9,887 protein-coding genes which were annotated using GO and Pfam databases. The encoded carbohydrate active enzymes revealed large numbers of lignolytic enzymes present, comparable to those of other white-rot plant pathogens. In addition, P. noxius also possessed larger numbers of cellulose, xylan and hemicellulose degrading enzymes than other plant pathogens. Searches for virulence genes was also performed using PHI-Base and DFVF databases revealing a host of virulence-related genes and effectors. The combination of non-specific host range, unique carbohydrate active enzyme profile and large amount of putative virulence genes could explain the reasons behind the aggressive nature and increased virulence of this plant pathogen. The draft genome sequences presented here will provide references for strains found in Hong Kong. Together with emerging research, this information could be used for genetic diversity and epidemiology research on a global scale as well as expediting our efforts towards discovering the mechanisms of pathogenicity of this devastating pathogen.


July 7, 2019  |  

Comparative and population genomic landscape of Phellinus noxius: A hypervariable fungus causing root rot in trees.

The order Hymenochaetales of white rot fungi contain some of the most aggressive wood decayers causing tree deaths around the world. Despite their ecological importance and the impact of diseases they cause, little is known about the evolution and transmission patterns of these pathogens. Here, we sequenced and undertook comparative genomic analyses of Hymenochaetales genomes using brown root rot fungus Phellinus noxius, wood-decomposing fungus Phellinus lamaensis, laminated root rot fungus Phellinus sulphurascens and trunk pathogen Porodaedalea pini. Many gene families of lignin-degrading enzymes were identified from these fungi, reflecting their ability as white rot fungi. Comparing against distant fungi highlighted the expansion of 1,3-beta-glucan synthases in P. noxius, which may account for its fast-growing attribute. We identified 13 linkage groups conserved within Agaricomycetes, suggesting the evolution of stable karyotypes. We determined that P. noxius has a bipolar heterothallic mating system, with unusual highly expanded ~60 kb A locus as a result of accumulating gene transposition. We investigated the population genomics of 60 P. noxius isolates across multiple islands of the Asia Pacific region. Whole-genome sequencing showed this multinucleate species contains abundant poly-allelic single nucleotide polymorphisms with atypical allele frequencies. Different patterns of intra-isolate polymorphism reflect mono-/heterokaryotic states which are both prevalent in nature. We have shown two genetically separated lineages with one spanning across many islands despite the geographical barriers. Both populations possess extraordinary genetic diversity and show contrasting evolutionary scenarios. These results provide a framework to further investigate the genetic basis underlying the fitness and virulence of white rot fungi.© 2017 John Wiley & Sons Ltd.


July 7, 2019  |  

Meeting report on experimental approaches to evolution and ecology using yeast and other model systems.

The fourth EMBO-sponsored conference on Experimental Approaches to Evolution and Ecology Using Yeast and Other Model Systems (https://www.embl.de/training/events/2016/EAE16-01/), was held at the EMBL in Heidelberg, Germany, October 19-23, 2016. The conference was organized by Judith Berman (Tel Aviv University), Maitreya Dunham (University of Washington), Jun-Yi Leu (Academia Sinica), and Lars Steinmetz (EMBL Heidelberg and Stanford University). The meeting attracted ~120 researchers from 28 countries and covered a wide range of topics in the fields of genetics, evolutionary biology, and ecology with a unifying focus on yeast as a model system. Attendees enjoyed the Keith Haring inspired yeast florescence microscopy artwork (Figure 1), a unique feature of the meeting since its inception, and the one-minute flash talks that catalyzed discussions at two vibrant poster sessions. The meeting coincided with the 20th anniversary of the publication describing the sequence of the first eukaryotic genome, Saccharomyces cerevisiae (Goffeau et al. 1996). Many of the conference talks focused on important questions about what is contained in the genome, how genomes evolve, and the architecture and behavior of communities of phenotypically and genotypically diverse microorganisms. Here, we summarize highlights of the research talks around these themes. Nearly all presentations focused on novel findings, and we refer the reader to relevant manuscripts that have subsequently been published. Copyright © 2017, G3: Genes, Genomes, Genetics.


July 7, 2019  |  

The genome sequence of Bipolaris cookei reveals mechanisms of pathogenesis underlying target leaf spot of sorghum.

Bipolaris cookei (=Bipolaris sorghicola) causes target leaf spot, one of the most prevalent foliar diseases of sorghum. Little is known about the molecular basis of pathogenesis in B. cookei, in large part due to a paucity of resources for molecular genetics, such as a reference genome. Here, a draft genome sequence of B. cookei was obtained and analyzed. A hybrid assembly strategy utilizing Illumina and Pacific Biosciences sequencing technologies produced a draft nuclear genome of 36.1?Mb, organized into 321 scaffolds with L50 of 31 and N50 of 378?kb, from which 11,189 genes were predicted. Additionally, a finished mitochondrial genome sequence of 135,790?bp was obtained, which contained 75 predicted genes. Comparative genomics revealed that B. cookei possessed substantially fewer carbohydrate-active enzymes and secreted proteins than closely related Bipolaris species. Novel genes involved in secondary metabolism, including genes implicated in ophiobolin biosynthesis, were identified. Among 37 B. cookei genes induced during sorghum infection, one encodes a putative effector with a limited taxonomic distribution among plant pathogenic fungi. The draft genome sequence of B. cookei provided novel insights into target leaf spot of sorghum and is an important resource for future investigation.


July 7, 2019  |  

Chromosome level assembly and secondary metabolite potential of the parasitic fungus Cordyceps militaris.

Cordyceps militaris is an insect pathogenic fungus that is prized for its use in traditional medicine. This and other entomopathogenic fungi are understudied sources for the discovery of new bioactive molecules. In this study, PacBio SMRT long read sequencing technology was used to sequence the genome of C. militaris with a focus on the genetic potential for secondary metabolite production in the genome assembly of this fungus.This is first chromosome level assembly of a species in the Cordyceps genera. In this seven chromosome assembly of 33.6 Mba there were 9371 genes identified. Cordyceps militaris was determined to have the MAT 1-1-1 and MAT 1-1-2 mating type genes. Secondary metabolite analysis revealed the potential for at least 36 distinct metabolites from a variety of classes. Three of these gene clusters had homology with clusters producing desmethylbassianin, equisetin and emericellamide that had been studied in other fungi.Our assembly and analysis has revealed that C. militaris has a wealth of gene clusters for secondary metabolite production distributed among seven chromosomes. The identification of these gene clusters will facilitate the future study and identification of the secondary metabolites produced by this entomopathogenic fungus.


July 7, 2019  |  

HISEA: HIerarchical SEed Aligner for PacBio data.

The next generation sequencing (NGS) techniques have been around for over a decade. Many of their fundamental applications rely on the ability to compute good genome assemblies. As the technology evolves, the assembly algorithms and tools have to continuously adjust and improve. The currently dominant technology of Illumina produces reads that are too short to bridge many repeats, setting limits on what can be successfully assembled. The emerging SMRT (Single Molecule, Real-Time) sequencing technique from Pacific Biosciences produces uniform coverage and long reads of length up to sixty thousand base pairs, enabling significantly better genome assemblies. However, SMRT reads are much more expensive and have a much higher error rate than Illumina’s – around 10-15% – mostly due to indels. New algorithms are very much needed to take advantage of the long reads while mitigating the effect of high error rate and lowering the required coverage.An essential step in assembling SMRT data is the detection of alignments, or overlaps, between reads. High error rate and very long reads make this a much more challenging problem than for Illumina data. We present a new pairwise read aligner, or overlapper, HISEA (Hierarchical SEed Aligner) for SMRT sequencing data. HISEA uses a novel two-step k-mer search, employing consistent clustering, k-mer filtering, and read alignment extension.We compare HISEA against several state-of-the-art programs – BLASR, DALIGNER, GraphMap, MHAP, and Minimap – on real datasets from five organisms. We compare their sensitivity, precision, specificity, F1-score, as well as time and memory usage. We also introduce a new, more precise, evaluation method. Finally, we compare the two leading programs, MHAP and HISEA, for their genome assembly performance in the Canu pipeline.Our algorithm has the best alignment detection sensitivity among all programs for SMRT data, significantly higher than the current best. The currently best assembler for SMRT data is the Canu program which uses the MHAP aligner in its pipeline. We have incorporated our new HISEA aligner in the Canu pipeline and benchmarked it against the best pipeline for multiple datasets at two relevant coverage levels: 30x and 50x. Our assemblies are better than those using MHAP for both coverage levels. Moreover, Canu+HISEA assemblies for 30x coverage are comparable with Canu+MHAP assemblies for 50x coverage, while being faster and cheaper.The HISEA algorithm produces alignments with highest sensitivity compared with the current state-of-the-art algorithms. Integrated in the Canu pipeline, currently the best for assembling PacBio data, it produces better assemblies than Canu+MHAP.


July 7, 2019  |  

The complete mitochondrial genome sequence of the ascomycete plant pathogen Colletotrichum acutatum.

Collectotrichum acutatum is a fungal plant pathogen that causes pre- and post-harvest anthracnose on a wide range of plants worldwide. The complete mitochondrial genome of C. acutatum has been determined for the first time. This study revealed that the mitogenome of C. acutatum is a closed circular molecule of 30 892?bp in length, with a G?+?C content of 34.7%, which include 15 protein-coding genes, 22 tRNA genes, and two rRNA genes. All the protein-coding genes, accounting for 46.6% of the C. acutatum mitogenome, start with the standard ATG codon and end with the TAA termination codon except for nad6 gene using the TAG termination codon. The mitogenome information of C. acutatum can provide molecular basis for further studies on molecular systematics and evolutionary dynamics.


July 7, 2019  |  

Draft genome sequence of Alternaria alternata ATCC 34957.

We report the draft genome sequence of Alternaria alternata ATCC 34957. This strain was previously reported to produce alternariol and alternariol monomethyl ether on weathered grain sorghum. The genome was sequenced with PacBio technology and assembled into 27 scaffolds with a total genome size of 33.5 Mb. Copyright © 2016 Nguyen et al.


July 7, 2019  |  

Comparative genomics of early-diverging mushroom-forming fungi provides insights into the origins of lignocellulose decay capabilities.

Evolution of lignocellulose decomposition was one of the most ecologically important innovations in fungi. White-rot fungi in the Agaricomycetes (mushrooms and relatives) are the most effective microorganisms in degrading both cellulose and lignin components of woody plant cell walls (PCW). However, the precise evolutionary origins of lignocellulose decomposition are poorly understood, largely because certain early-diverging clades of Agaricomycetes and its sister group, the Dacrymycetes, have yet to be sampled, or have been undersampled, in comparative genomic studies. Here, we present new genome sequences of ten saprotrophic fungi, including members of the Dacrymycetes and early-diverging clades of Agaricomycetes (Cantharellales, Sebacinales, Auriculariales, and Trechisporales), which we use to refine the origins and evolutionary history of the enzymatic toolkit of lignocellulose decomposition. We reconstructed the origin of ligninolytic enzymes, focusing on class II peroxidases (AA2), as well as enzymes that attack crystalline cellulose. Despite previous reports of white rot appearing as early as the Dacrymycetes, our results suggest that white-rot fungi evolved later in the Agaricomycetes, with the first class II peroxidases reconstructed in the ancestor of the Auriculariales and residual Agaricomycetes. The exemplars of the most ancient clades of Agaricomycetes that we sampled all lack class II peroxidases, and are thus concluded to use a combination of plesiomorphic and derived PCW degrading enzymes that predate the evolution of white rot.


July 7, 2019  |  

Draft genome sequences of the turfgrass pathogen Sclerotinia homoeocarpa.

Sclerotinia homoeocarpa (F. T. Bennett) is one of the most economically important pathogens on high-amenity cool-season turfgrasses, where it causes dollar spot. To understand the genetic mechanisms of fungicide resistance, which has become highly prevalent, the whole genomes of two isolates with varied resistance levels to fungicides were sequenced. Copyright © 2016 Green et al.


July 7, 2019  |  

Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts.

Pneumocystis jirovecii is a major cause of life-threatening pneumonia in immunosuppressed patients including transplant recipients and those with HIV/AIDS, yet surprisingly little is known about the biology of this fungal pathogen. Here we report near complete genome assemblies for three Pneumocystis species that infect humans, rats and mice. Pneumocystis genomes are highly compact relative to other fungi, with substantial reductions of ribosomal RNA genes, transporters, transcription factors and many metabolic pathways, but contain expansions of surface proteins, especially a unique and complex surface glycoprotein superfamily, as well as proteases and RNA processing proteins. Unexpectedly, the key fungal cell wall components chitin and outer chain N-mannans are absent, based on genome content and experimental validation. Our findings suggest that Pneumocystis has developed unique mechanisms of adaptation to life exclusively in mammalian hosts, including dependence on the lungs for gas and nutrients and highly efficient strategies to escape both host innate and acquired immune defenses.


July 7, 2019  |  

Insights into adaptations to a near-obligate nematode endoparasitic lifestyle from the finished genome of Drechmeria coniospora.

Nematophagous fungi employ three distinct predatory strategies: nematode trapping, parasitism of females and eggs, and endoparasitism. While endoparasites play key roles in controlling nematode populations in nature, their application for integrated pest management is hindered by the limited understanding of their biology. We present a comparative analysis of a high quality finished genome assembly of Drechmeria coniospora, a model endoparasitic nematophagous fungus, integrated with a transcriptomic study. Adaptation of D. coniospora to its almost completely obligate endoparasitic lifestyle led to the simplification of many orthologous gene families involved in the saprophytic trophic mode, while maintaining orthologs of most known fungal pathogen-host interaction proteins, stress response circuits and putative effectors of the small secreted protein type. The need to adhere to and penetrate the host cuticle led to a selective radiation of surface proteins and hydrolytic enzymes. Although the endoparasite has a simplified secondary metabolome, it produces a novel peptaibiotic family that shows antibacterial, antifungal and nematicidal activities. Our analyses emphasize the basic malleability of the D. coniospora genome: loss of genes advantageous for the saprophytic lifestyle; modulation of elements that its cohort species utilize for entomopathogenesis; and expansion of protein families necessary for the nematode endoparasitic lifestyle.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.