Menu
July 7, 2019  |  

Genomic and transcriptomic analysis of the streptomycin-dependent Mycobacterium tuberculosis strain 18b.

The ability of Mycobacterium tuberculosis to establish a latent infection (LTBI) in humans confounds the treatment of tuberculosis. Consequently, there is a need to discover new therapeutic agents that can kill M. tuberculosis both during active disease and LTBI. The streptomycin-dependent strain of M. tuberculosis, 18b, provides a useful tool for this purpose since upon removal of streptomycin (STR) it enters a non-replicating state that mimics latency both in vitro and in animal models.The 4.41 Mb genome sequence of M. tuberculosis 18b was determined and this revealed the strain to belong to clade 3 of the ancient ancestral lineage of the Beijing family. STR-dependence was attributable to insertion of a single cytosine in the 530 loop of the 16S rRNA and to a single amino acid insertion in the N-terminal domain of initiation factor 3. RNA-seq was used to understand the genetic programme activated upon STR-withdrawal and hence to gain insight into LTBI. This revealed reconfiguration of gene expression and metabolic pathways showing strong similarities between non-replicating 18b and M. tuberculosis residing within macrophages, and with the core stationary phase and microaerophilic responses.The findings of this investigation confirm the validity of 18b as a model for LTBI, and provide insight into both the evolution of tubercle bacilli and the functioning of the ribosome.


July 7, 2019  |  

Genome sequences of five nonvirulent Listeria monocytogenes serovar 4 strains.

We present the complete genome sequences of five nonpathogenicListeria monocytogenesserovar 4 strains: WSLC 1018 (4e), 1019 (4c), 1020 (4a), 1033 (4d), and 1047 (4d). These sequences may help to uncover genes involved in the synthesis of the serovar antigens-phenotypic determinants of virulence deemed clinically relevant. Copyright © 2016 Sumrall et al.


July 7, 2019  |  

Single-molecule DNA hybridisation studied by using a modified DNA sequencer: a comparison with surface plasmon resonance data

Current methods for the determination of molecular interactions are widely used in the analytical sciences. To identify new methods, we investigated as a model system the hybridisation of a short 7 nt oligonucleotide labelled with, structurally, very similar cyanine dyes CY3 and DY-547, respectively, to a 34 nt oligonucleotide probe immobilised in a zero-mode waveguide (ZMW) nanostructure. Using a modified commercial off-the-shelf DNA sequencer, we established the principles to measure biomolecular interactions at the single-molecule level. Kinetic data were obtained from trains of fluorescence pulses, allowing the calculation of association and dissociation rate constants (k on, k off). For the 7mer labelled with the positively charged CY3 dye, k on and k off are ~3 larger and ~2 times smaller, respectively, compared with the oligonucleotide labelled with negatively charged DY-547 dye. The effect of neighbouring molecules lacking the 7nt binding sequence on single-molecule rate constants is small. The association rate constants is reduced by only 20–35%. Hybrid dissociation is not affected, since as a consequence of the experimental design, rebinding cannot take place. Results of single-molecule experiments were compared with data obtained from surface plasmon resonance (SPR) performed under comparable conditions. A good correlation for the association rate constants within a factor of 1.5 was found. Dissociation rate constants are smaller by a factor of 2–3 which we interpreted as a result of rebinding to neighbouring probes. Results of SPR measurements tend to systematically underestimate dissociation rate constants. The amount of this deviation depends on the association rate constant and the surface probe density. As a consequence, it is recommended to work at low probe densities to keep this effect small.


July 7, 2019  |  

The absence of a mature cell wall sacculus in stable Listeria monocytogenes L-form cells is independent of peptidoglycan synthesis.

L-forms are cell wall-deficient variants of otherwise walled bacteria that maintain the ability to survive and proliferate in absence of the surrounding peptidoglycan sacculus. While transient or unstable L-forms can revert to the walled state and may still rely on residual peptidoglycan synthesis for multiplication, stable L-forms cannot revert to the walled form and are believed to propagate in the complete absence of peptidoglycan. L-forms are increasingly studied as a fundamental biological model system for cell wall synthesis. Here, we show that a stable L-form of the intracellular pathogen Listeria monocytogenes features a surprisingly intact peptidoglycan synthesis pathway including glycosyl transfer, in spite of the accumulation of multiple mutations during prolonged passage in the cell wall-deficient state. Microscopic and biochemical analysis revealed the presence of peptidoglycan precursors and functional glycosyl transferases, resulting in the formation of peptidoglycan polymers but without the synthesis of a mature cell wall sacculus. In conclusion, we found that stable, non-reverting L-forms, which do not require active PG synthesis for proliferation, may still continue to produce aberrant peptidoglycan.


July 7, 2019  |  

Pseudomonas cerasi sp. nov. (non Griffin, 1911) isolated from diseased tissue of cherry.

Eight isolates of Gram-negative fluorescent bacteria (58(T), 122, 374, 791, 963, 966, 970a and 1021) were obtained from diseased tissue of cherry trees from different regions of Poland. The symptoms resembled those of bacterial canker. Based on an analysis of 16S rDNA sequences the isolates shared the highest over 99.9% similarity with Pseudomonas ficuserectae JCM 2400(T) and P. congelans DSM 14939(T). Phylogenetic analysis using housekeeping genes gyrB, rpoD and rpoB revealed that they form a separate cluster and confirmed their closest relation to P. syringae NCPPB 281(T) and P. congelans LMG 21466(T). DNA-DNA hybridization between the cherry isolate 58(T) and the type strains of these two closely related species revealed relatedness values of 58.2% and 41.9%, respectively. This was further supported by Average Nucleotide Identity (ANIb) and Genome-to-Genome Distance (GGDC) between the whole genome sequences of strain LMG 28609(T) and closely related Pseudomonas species. The major cellular fatty acids are 16:0 and summed feature 3 (16:1 ?7c/15:0 iso 2OH). Phenotypic characteristics differentiated the novel isolates from other closely related species. The G+C content of the genomic DNA of strain 58(T) was 59%. The diversity was proved by PCR MP and BOX PCR, eliminating the possibility that they constitute a clonal population. Based on the evidence of this polyphasic taxonomic study the eight strains are considered to represent a novel species of the genus Pseudomonas for which the name P. cerasi sp. nov. (non Griffin, 1911) is proposed. The type strain of this species is 58(T) (=LMG 28609(T)=CFBP 8305(T)). Copyright © 2016 Elsevier GmbH. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Staphylococcus carnosus LTH 3730.

Specific strains of the apathogenic coagulase-negative species Staphylococcus carnosus are frequently used as meat starter cultures, as they contribute to color formation and the production of aroma compounds. Here, we report the complete genome sequence of S. carnosus LTH 3730, a strain isolated from a fermented fish product. Copyright © 2016 Müller et al.


July 7, 2019  |  

Full-length nucleotide sequences of mcr-1-harboring plasmids isolated from extended- spectrum-ß-lactamase-producing Escherichia coli isolates of different origins.

Here, we present the full sequences of three mcr-1-carrying plasmids isolated from extended-spectrum-ß-lactamase (ESBL)-producing Escherichia coli The plasmids belong to three different replicon types and are 34,640 bp, 209,401 bp, and 247,885 bp in size. We describe for the first time a composite transposon containing mcr-1 localized on a multidrug-resistant (MDR) IncHI2 plasmid harboring additional determinants of resistance to six different classes of antibiotics, including the ESBL gene blaCTX-M-1, and heavy metal resistance. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

The evolution of orphan regions in genomes of a fungal pathogen of wheat.

Fungal plant pathogens rapidly evolve virulence on resistant hosts through mutations in genes encoding proteins that modulate the host immune responses. The mutational spectrum likely includes chromosomal rearrangements responsible for gains or losses of entire genes. However, the mechanisms creating adaptive structural variation in fungal pathogen populations are poorly understood. We used complete genome assemblies to quantify structural variants segregating in the highly polymorphic fungal wheat pathogen Zymoseptoria tritici The genetic basis of virulence in Z. tritici is complex, and populations harbor significant genetic variation for virulence; hence, we aimed to identify whether structural variation led to functional differences. We combined single-molecule real-time sequencing, genetic maps, and transcriptomics data to generate a fully assembled and annotated genome of the highly virulent field isolate 3D7. Comparative genomics analyses against the complete reference genome IPO323 identified large chromosomal inversions and the complete gain or loss of transposable-element clusters, explaining the extensive chromosomal-length polymorphisms found in this species. Both the 3D7 and IPO323 genomes harbored long tracts of sequences exclusive to one of the two genomes. These orphan regions contained 296 genes unique to the 3D7 genome and not previously known for this species. These orphan genes tended to be organized in clusters and showed evidence of mutational decay. Moreover, the orphan genes were enriched in genes encoding putative effectors and included a gene that is one of the most upregulated putative effector genes during wheat infection. Our study showed that this pathogen species harbored extensive chromosomal structure polymorphism that may drive the evolution of virulence.Pathogen outbreak populations often harbor previously unknown genes conferring virulence. Hence, a key puzzle of rapid pathogen evolution is the origin of such evolutionary novelty in genomes. Chromosomal rearrangements and structural variation in pathogen populations likely play a key role. However, identifying such polymorphism is challenging, as most genome-sequencing approaches only yield information about point mutations. We combined long-read technology and genetic maps to assemble the complete genome of a strain of a highly polymorphic fungal pathogen of wheat. Comparisons against the reference genome of the species showed substantial variation in the chromosome structure and revealed large regions unique to each assembled genome. These regions were enriched in genes encoding likely effector proteins, which are important components of pathogenicity. Our study showed that pathogen populations harbor extensive polymorphism at the chromosome level and that this polymorphism can be a source of adaptive genetic variation in pathogen evolution. Copyright © 2016 Plissonneau et al.


July 7, 2019  |  

A complete toolset for the study of Ustilago bromivora and Brachypodium sp. as a fungal-temperate grass pathosystem.

Due to their economic relevance, the study of plant pathogen interactions is of importance. However, elucidating these interactions and their underlying molecular mechanisms remains challenging since both host and pathogen need to be fully genetically accessible organisms. Here we present milestones in the establishment of a new biotrophic model pathosystem: Ustilago bromivora and Brachypodium sp. We provide a complete toolset, including an annotated fungal genome and methods for genetic manipulation of the fungus and its host plant. This toolset will enable researchers to easily study biotrophic interactions at the molecular level on both the pathogen and the host side. Moreover, our research on the fungal life cycle revealed a mating type bias phenomenon. U. bromivora harbors a haplo-lethal allele that is linked to one mating type region. As a result, the identified mating type bias strongly promotes inbreeding, which we consider to be a potential speciation driver.


July 7, 2019  |  

Cell cycle constraints and environmental control of local DNA hypomethylation in a-proteobacteria.

Heritable DNA methylation imprints are ubiquitous and underlie genetic variability from bacteria to humans. In microbial genomes, DNA methylation has been implicated in gene transcription, DNA replication and repair, nucleoid segregation, transposition and virulence of pathogenic strains. Despite the importance of local (hypo)methylation at specific loci, how and when these patterns are established during the cell cycle remains poorly characterized. Taking advantage of the small genomes and the synchronizability of a-proteobacteria, we discovered that conserved determinants of the cell cycle transcriptional circuitry establish specific hypomethylation patterns in the cell cycle model system Caulobacter crescentus. We used genome-wide methyl-N6-adenine (m6A-) analyses by restriction-enzyme-cleavage sequencing (REC-Seq) and single-molecule real-time (SMRT) sequencing to show that MucR, a transcriptional regulator that represses virulence and cell cycle genes in S-phase but no longer in G1-phase, occludes 5′-GANTC-3′ sequence motifs that are methylated by the DNA adenine methyltransferase CcrM. Constitutive expression of CcrM or heterologous methylases in at least two different a-proteobacteria homogenizes m6A patterns even when MucR is present and affects promoter activity. Environmental stress (phosphate limitation) can override and reconfigure local hypomethylation patterns imposed by the cell cycle circuitry that dictate when and where local hypomethylation is instated.


July 7, 2019  |  

Complete genome sequence and transcriptome regulation of the pentose utilizing yeast Sugiyamaella lignohabitans.

Efficient conversion of hexoses and pentoses into value-added chemicals represents one core step for establishing economically feasible biorefineries from lignocellulosic material. While extensive research efforts have recently provided advances in the overall process performance, the quest for new microbial cell factories and novel enzymes sources is still open. As demonstrated recently the yeast Sugiyamaella lignohabitans (formerly Candida lignohabitans) represents a promising microbial cell factory for the production of organic acids from lignocellulosic hydrolysates. We report here the de novo genome assembly of S. lignohabitans using the Single Molecule Real-Time platform, with gene prediction refined by using RNA-seq. The sequencing revealed a 15.98 Mb genome, subdivided into four chromosomes. By phylogenetic analysis, Blastobotrys (Arxula) adeninivorans and Yarrowia lipolytica were found to be close relatives of S. lignohabitans Differential gene expression was evaluated in typical growth conditions on glucose and xylose and allowed a first insight into the transcriptional response of S. lignohabitans to different carbon sources and different oxygenation conditions. Novel sequences for enzymes and transporters involved in the central carbon metabolism, and therefore of potential biotechnological interest, were identified. These data open the way for a better understanding of the metabolism of S. lignohabitans and provide resources for further metabolic engineering.© FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Complete genome sequence of Escherichia coli 81009, a representative of the sequence type 131 C1-M27 clade with a multidrug-resistant phenotype.

The sequence type 131 (ST131)-H30 clone is responsible for a significant proportion of multidrug-resistant extraintestinal Escherichia coli infections. Recently, the C1-M27 clade of ST131-H30, associated with blaCTX-M-27, has emerged. The complete genome sequence of E. coli isolate 81009 belonging to this clone, previously used during the development of ST131-specific monoclonal antibodies, is reported here. Copyright © 2018 Mutti et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.