Menu
July 7, 2019  |  

Complete genome sequence of “Thiodictyon syntrophicum” sp. nov. strain Cad16T, a photolithoautotrophic purple sulfur bacterium isolated from the alpine meromictic Lake Cadagno.

Thiodictyon syntrophicum sp. nov. strain Cad16T is a photoautotrophic purple sulfur bacterium belonging to the family of Chromatiaceae in the class of Gammaproteobacteria. The type strain Cad16T was isolated from the chemocline of the alpine meromictic Lake Cadagno in Switzerland. Strain Cad16T represents a key species within this sulfur-driven bacterial ecosystem with respect to carbon fixation. The 7.74-Mbp genome of strain Cad16T has been sequenced and annotated. It encodes 6237 predicted protein sequences and 59 RNA sequences. Phylogenetic comparison based on 16S rRNA revealed that Thiodictyon elegans strain DSM 232T the most closely related species. Genes involved in sulfur oxidation, central carbon metabolism and transmembrane transport were found. Noteworthy, clusters of genes encoding the photosynthetic machinery and pigment biosynthesis are found on the 0.48 Mb plasmid pTs485. We provide a detailed insight into the Cad16T genome and analyze it in the context of the microbial ecosystem of Lake Cadagno.


July 7, 2019  |  

Complete and assembled genome sequence of an NDM-9- and CTX-M-15-producing Klebsiella pneumoniae ST147 wastewater isolate from Switzerland.

Carbapenem-resistant Klebsiella pneumoniae have emerged worldwide and represent a major threat to human health. Here we report the genome sequence of K. pneumoniae 002SK2, an NDM-9- and CTX-M-15-producing strain isolated from wastewater in Switzerland and belonging to the international high-risk clone sequence type 147 (ST147).Whole-genome sequencing of K. pneumoniae 002SK2 was performed using Pacific Biosciences (PacBio) single-molecule, real-time (SMRT) technology RS2 reads (C4/P6 chemistry). De novo assembly was performed using Canu assembler, and sequences were annotated using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP).The genome of K. pneumoniae 002SK2 consists of a 5.4-Mbp chromosome containing blaSHV-11 and fosA6, a 159-kb IncFIB(K) plasmid carrying the heavy metal resistance genes ars and sil, and a 77-kb IncR plasmid containing blaCTX-M-15, blaNDM-9, blaOXA-9 and blaTEM-1.Multidrug-resistant K. pneumoniae harbouring blaNDM-9 and blaCTX-M-15 are spreading into the environment, most probably via wastewater from clinical settings. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Chromosomal Sil system contributes to silver resistance in E. coli ATCC 8739.

The rise of antibiotic resistance in pathogenic bacteria is endangering the efficacy of antibiotics, which consequently results in greater use of silver as a biocide. Chromosomal mapping of the Cus system or plasmid encoded Sil system and their relationship with silver resistance was studied for several gram-negative bacteria. However, only few reports investigated silver detoxification mediated by the Sil system integrated in Escherichia coli chromosome. Accordingly, this work aimed to study the Sil system in E. coli ATCC 8739 and to produce evidence for its role in silver resistance development. Silver resistance was induced in E. coli ATCC 8739 by stepwise passage in culture media containing increasing concentrations of AgNO3. The published genome of E. coli ATCC 8739 contains a region showing strong homology to the Sil system genes. The role of this region in E. coli ATCC 8739 was assessed by monitoring the expression of silC upon silver stress, which resulted in a 350-fold increased expression. De novo sequencing of the whole genome of a silver resistant strain derived from E. coli ATCC 8739 revealed mutations in ORFs putative for SilR and CusR. The silver resistant strain (E. coli AgNO3R) showed constitutive expression of silC which posed a cost of fitness resulting in retarded growth. Furthermore, E. coli AgNO3R exhibited cross-resistance to ciprofloxacin and a slightly increased tolerance to ampicillin. This study demonstrates that E. coli is able to develop resistance to silver, which may pose a threat towards an effective use of silver compounds as antiseptics.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.