July 7, 2019  |  

Complete mitogenome of Indian mottled eel, Anguilla bengalensis bengalensis (Gray, 1831) through PacBio RSII sequencing.

Complete mitogenome sequence for Anguilla bengalensis bengalensis (family Anguillidae) was generated through third-generation sequencing platform. The 16?714 bp mitgenome sequence contained 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs, and a non-coding (control) region. The gene order was identical to that observed in most of the other vertebrates. The comparison of complete mitogenome sequence of Indian mottled eel generated during this study with two other subspecies did not agree with the taxonomic status of the three subspecies and considered as one species.


July 7, 2019  |  

Current status of genome sequencing and its applications in aquaculture

Aquaculture is the fastest-growing food production sector in agriculture, with great potential to meet projected protein needs of human beings. Aquaculture is facing several challenges, including lack of a sufficient number of genetically improved species, lack of species-specific feeds, high mortality due to diseases and pollution of ecosystems. The rapid development of sequencing technologies has revolutionized biological sciences, and supplied necessary tools to tackle these challenges in aquaculture and thus ensure its sustainability and profitability. So far, draft genomes have been published in over 24 aquaculture species, and used to address important issues related to aquaculture. We briefly review the advances of next generation sequencing technologies, and summarize the status of whole genome sequencing and its general applications (i.e. establishing reference genomes and discovering DNA markers) and specific applications in tackling some important issues (e.g. breeding, diseases, sex determination & maturation) related to aquaculture. For sequencing a new genome, we recommend the use of 100–200 × short reads using Illumina and 50–60 × long reads with PacBio sequencing technologies. For identification of a large number of SNPs, resequencing pooled DNA samples from different populations is the most cost-effective way. We also discuss the challenges and future directions of whole genome sequencing in aquaculture.


July 7, 2019  |  

An improved genome assembly uncovers prolific tandem repeats in Atlantic cod.

The first Atlantic cod (Gadus morhua) genome assembly published in 2011 was one of the early genome assemblies exclusively based on high-throughput 454 pyrosequencing. Since then, rapid advances in sequencing technologies have led to a multitude of assemblies generated for complex genomes, although many of these are of a fragmented nature with a significant fraction of bases in gaps. The development of long-read sequencing and improved software now enable the generation of more contiguous genome assemblies.By combining data from Illumina, 454 and the longer PacBio sequencing technologies, as well as integrating the results of multiple assembly programs, we have created a substantially improved version of the Atlantic cod genome assembly. The sequence contiguity of this assembly is increased fifty-fold and the proportion of gap-bases has been reduced fifteen-fold. Compared to other vertebrates, the assembly contains an unusual high density of tandem repeats (TRs). Indeed, retrospective analyses reveal that gaps in the first genome assembly were largely associated with these TRs. We show that 21% of the TRs across the assembly, 19% in the promoter regions and 12% in the coding sequences are heterozygous in the sequenced individual.The inclusion of PacBio reads combined with the use of multiple assembly programs drastically improved the Atlantic cod genome assembly by successfully resolving long TRs. The high frequency of heterozygous TRs within or in the vicinity of genes in the genome indicate a considerable standing genomic variation in Atlantic cod populations, which is likely of evolutionary importance.


July 7, 2019  |  

Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.).

Pikes represent an important genus (Esox) harbouring a pre-duplication karyotype (2n?=?2x?=?50) of economically important salmonid pseudopolyploids. Here, we have characterized the 5S ribosomal RNA genes (rDNA) in Esox lucius and its closely related E. cisalpinus using cytogenetic, molecular and genomic approaches. Intragenomic homogeneity and copy number estimation was carried out using Illumina reads. The higher-order structure of rDNA arrays was investigated by the analysis of long PacBio reads. Position of loci on chromosomes was determined by FISH. DNA methylation was analysed by methylation-sensitive restriction enzymes.The 5S rDNA loci occupy exclusively (peri)centromeric regions on 30-38 acrocentric chromosomes in both E. lucius and E. cisalpinus. The large number of loci is accompanied by extreme amplification of genes (>20,000 copies), which is to the best of our knowledge one of the highest copy number of rRNA genes in animals ever reported. Conserved secondary structures of predicted 5S rRNAs indicate that most of the amplified genes are potentially functional. Only few SNPs were found in genic regions indicating their high homogeneity while intergenic spacers were more heterogeneous and several families were identified. Analysis of 10-30 kb-long molecules sequenced by the PacBio technology (containing about 40% of total 5S rDNA) revealed that the vast majority (96%) of genes are organised in large several kilobase-long blocks. Dispersed genes or short tandems were less common (4%). The adjacent 5S blocks were directly linked, separated by intervening DNA and even inverted. The 5S units differing in the intergenic spacers formed both homogeneous and heterogeneous (mixed) blocks indicating variable degree of homogenisation between the loci. Both E. lucius and E. cisalpinus 5S rDNA was heavily methylated at CG dinucleotides.Extreme amplification of 5S rRNA genes in the Esox genome occurred in the absence of significant pseudogenisation suggesting its recent origin and/or intensive homogenisation processes. The dense methylation of units indicates that powerful epigenetic mechanisms have evolved in this group of fish to silence amplified genes. We discuss how the higher-order repeat structures impact on homogenisation of 5S rDNA in the genome.


July 7, 2019  |  

Evolutionary redesign of the Atlantic cod (Gadus morhua L.) Toll-like receptor repertoire by gene losses and expansions.

Genome sequencing of the teleost Atlantic cod demonstrated loss of the Major Histocompatibility Complex (MHC) class II, an extreme gene expansion of MHC class I and gene expansions and losses in the innate pattern recognition receptor (PRR) family of Toll-like receptors (TLR). In a comparative genomic setting, using an improved version of the genome, we characterize PRRs in Atlantic cod with emphasis on TLRs demonstrating the loss of TLR1/6, TLR2 and TLR5 and expansion of TLR7, TLR8, TLR9, TLR22 and TLR25. We find that Atlantic cod TLR expansions are strongly influenced by diversifying selection likely to increase the detectable ligand repertoire through neo- and subfunctionalization. Using RNAseq we find that Atlantic cod TLRs display likely tissue or developmental stage-specific expression patterns. In a broader perspective, a comprehensive vertebrate TLR phylogeny reveals that the Atlantic cod TLR repertoire is extreme with regards to losses and expansions compared to other teleosts. In addition we identify a substantial shift in TLR repertoires following the evolutionary transition from an aquatic vertebrate (fish) to a terrestrial (tetrapod) life style. Collectively, our findings provide new insight into the function and evolution of TLRs in Atlantic cod as well as the evolutionary history of vertebrate innate immunity.


July 7, 2019  |  

The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts.

Catfish represent 12% of teleost or 6.3% of all vertebrate species, and are of enormous economic value. Here we report a high-quality reference genome sequence of channel catfish (Ictalurus punctatus), the major aquaculture species in the US. The reference genome sequence was validated by genetic mapping of 54,000 SNPs, and annotated with 26,661 predicted protein-coding genes. Through comparative analysis of genomes and transcriptomes of scaled and scaleless fish and scale regeneration experiments, we address the genomic basis for the most striking physical characteristic of catfish, the evolutionary loss of scales and provide evidence that lack of secretory calcium-binding phosphoproteins accounts for the evolutionary loss of scales in catfish. The channel catfish reference genome sequence, along with two additional genome sequences and transcriptomes of scaled catfishes, provide crucial resources for evolutionary and biological studies. This work also demonstrates the power of comparative subtraction of candidate genes for traits of structural significance.


July 7, 2019  |  

Genomic characterization of the Atlantic cod sex-locus.

A variety of sex determination mechanisms can be observed in evolutionary divergent teleosts. Sex determination is genetic in Atlantic cod (Gadus morhua), however the genomic location or size of its sex-locus is unknown. Here, we characterize the sex-locus of Atlantic cod using whole genome sequence (WGS) data of 227 wild-caught specimens. Analyzing more than 55 million polymorphic loci, we identify 166 loci that are associated with sex. These loci are located in six distinct regions on five different linkage groups (LG) in the genome. The largest of these regions, an approximately 55?Kb region on LG11, contains the majority of genotypes that segregate closely according to a XX-XY system. Genotypes in this region can be used genetically determine sex, whereas those in the other regions are inconsistently sex-linked. The identified region on LG11 and its surrounding genes have no clear sequence homology with genes or regulatory elements associated with sex-determination or differentiation in other species. The functionality of this sex-locus therefore remains unknown. The WGS strategy used here proved adequate for detecting the small regions associated with sex in this species. Our results highlight the evolutionary flexibility in genomic architecture underlying teleost sex-determination and allow practical applications to genetically sex Atlantic cod.


July 7, 2019  |  

A full-body transcriptome and proteome resource for the European common carp.

The common carp (Cyprinus carpio) is the oldest, most domesticated and one of the most cultured fish species for food consumption. Besides its economic importance, the common carp is also highly suitable for comparative physiological and disease studies in combination with the animal model zebrafish (Danio rerio). They are genetically closely related but offer complementary benefits for fundamental research, with the large body mass of common carp presenting possibilities for obtaining sufficient cell material for advanced transcriptome and proteome studies.Here we have used 19 different tissues from an F1 hybrid strain of the common carp to perform transcriptome analyses using RNA-Seq. For a subset of the tissues we also have performed deep proteomic studies. As a reference, we updated the European common carp genome assembly using low coverage Pacific Biosciences sequencing to permit high-quality gene annotation. These annotated gene lists were linked to zebrafish homologs, enabling direct comparisons with published datasets. Using clustering, we have identified sets of genes that are potential selective markers for various types of tissues. In addition, we provide a script for a schematic anatomical viewer for visualizing organ-specific expression data.The identified transcriptome and proteome data for carp tissues represent a useful resource for further translational studies of tissue-specific markers for this economically important fish species that can lead to new markers for organ development. The similarity to zebrafish expression patterns confirms the value of common carp as a resource for studying tissue-specific expression in cyprinid fish. The availability of the annotated gene set of common carp will enable further research with both applied and fundamental purposes.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.