X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Finding Nemo’s Genes: A chromosome-scale reference assembly of the genome of the orange clownfish Amphiprion percula.

The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kernel has been established and was the first fish species for which it was demonstrated that antipredator responses of reef fishes could be impaired by ocean acidification. Despite its importance, molecular resources for this species remain scarce and until now it lacked a reference genome assembly. Here, we present a…

Read More »

Tuesday, April 21, 2020

Long-read sequence capture of the haemoglobin gene clusters across codfish species.

Combining high-throughput sequencing with targeted sequence capture has become an attractive tool to study specific genomic regions of interest. Most studies have so far focused on the exome using short-read technology. These approaches are not designed to capture intergenic regions needed to reconstruct genomic organization, including regulatory regions and gene synteny. Here, we demonstrate the power of combining targeted sequence capture with long-read sequencing technology for comparative genomic analyses of the haemoglobin (Hb) gene clusters across eight species separated by up to 70 million years. Guided by the reference genome assembly of the Atlantic cod (Gadus morhua) together with genome…

Read More »

Tuesday, April 21, 2020

Medaka Population Genome Structure and Demographic History Described via Genotyping-by-Sequencing.

Medaka is a model organism in medicine, genetics, developmental biology and population genetics. Lab stocks composed of more than 100 local wild populations are available for research in these fields. Thus, medaka represents a potentially excellent bioresource for screening disease-risk- and adaptation-related genes in genome-wide association studies. Although the genetic population structure should be known before performing such an analysis, a comprehensive study on the genome-wide diversity of wild medaka populations has not been performed. Here, we performed genotyping-by-sequencing (GBS) for 81 and 12 medakas captured from a bioresource and the wild, respectively. Based on the GBS data, we evaluated…

Read More »

Sunday, September 22, 2019

Constructing a ‘chromonome’ of yellowtail (Seriola quinqueradiata) for comparative analysis of chromosomal rearrangements.

To investigate chromosome evolution in fish species, we newly mapped 181 markers that allowed us to construct a yellowtail (Seriola quinqueradiata) radiation hybrid (RH) physical map with 1,713 DNA markers, which was far denser than a previous map, and we anchored thede novoassembled sequences onto the RH physical map. Finally, we mapped a total of 13,977 expressed sequence tags (ESTs) on a genome sequence assembly aligned with the physical map. Using the high-density physical map and anchored genome sequences, we accurately compared the yellowtail genome structure with the genome structures of five model fishes to identify characteristics of the yellowtail…

Read More »

Sunday, September 22, 2019

Cytogenomic analysis of several repetitive DNA elements in turbot (Scophthalmus maximus).

Repetitive DNA plays a fundamental role in the organization, size and evolution of eukaryotic genomes. The sequencing of the turbot revealed a small and compact genome, as in all flatfish studied to date. The assembly of repetitive regions is still incomplete because it is difficult to correctly identify their position, number and array. The combination of classical cytogenetic techniques along with high quality sequencing is essential to increase the knowledge of the structure and composition of these sequences and, thus, of the structure and function of the whole genome. In this work, the in silico analysis of H1 histone, 5S…

Read More »

Sunday, September 22, 2019

Whole genome sequencing of greater amberjack (Seriola dumerili) for SNP identification on aligned scaffolds and genome structural variation analysis using parallel resequencing

Greater amberjack (Seriola dumerili) is distributed in tropical and temperate waters worldwide and is an important aquaculture fish. We carried out de novo sequencing of the greater amberjack genome to construct a reference genome sequence to identify single nucleotide polymorphisms (SNPs) for breeding amberjack by marker-assisted or gene-assisted selection as well as to identify functional genes for biological traits. We obtained 200 times coverage and constructed a high-quality genome assembly using next generation sequencing technology. The assembled sequences were aligned onto a yellowtail (Seriola quinqueradiata) radiation hybrid (RH) physical map by sequence homology. A total of 215 of the longest…

Read More »

Sunday, September 22, 2019

Genomics of habitat choice and adaptive evolution in a deep-sea fish.

Intraspecific diversity promotes evolutionary change, and when partitioned among geographic regions or habitats can form the basis for speciation. Marine species live in an environment that can provide as much scope for diversification in the vertical as in the horizontal dimension. Understanding the relevant mechanisms will contribute significantly to our understanding of eco-evolutionary processes and effective biodiversity conservation. Here, we provide an annotated genome assembly for the deep-sea fish Coryphaenoides rupestris and re-sequencing data to show that differentiation at non-synonymous sites in functional loci distinguishes individuals living at different depths, independent of horizontal spatial distance. Our data indicate disruptive selection…

Read More »

Sunday, September 22, 2019

Chinook salmon (Oncorhynchus tshawytscha) genome and transcriptome.

When unifying genomic resources among studies and comparing data between species, there is often no better resource than a genome sequence. Having a reference genome for the Chinook salmon (Oncorhynchus tshawytscha) will enable the extensive genomic resources available for Pacific salmon, Atlantic salmon, and rainbow trout to be leveraged when asking questions related to the Chinook salmon. The Chinook salmon’s wide distribution, long cultural impact, evolutionary history, substantial hatchery production, and recent wild-population decline make it an important research species. In this study, we sequenced and assembled the genome of a Chilliwack River Hatchery female Chinook salmon (gynogenetic and homozygous…

Read More »

Sunday, September 22, 2019

The genome of the marine medaka Oryzias melastigma.

Marine medaka (Oryzias melastigma) is considered to be a useful fish model for marine and estuarine ecotoxicology studies and has good potential for field-based population genomics because of its geographical distribution in Asian estuarine and coastal areas. In this study, we present the first whole-genome draft of O. melastigma. The genome assembly consists of 8,602 scaffolds (N50 = 23.737 Mb) and a total genome length of 779.4 Mb. A total of 23,528 genes were predicted, and 12,670 gene families shared with three teleost species (Japanese medaka, mangrove killifish and zebrafish) were identified. Genome analyses revealed that the O. melastigma genome is highly heterozygous and contains a…

Read More »

Sunday, September 22, 2019

A continuous genome assembly of the corkwing wrasse (Symphodus melops).

The wrasses (Labridae) are one of the most successful and species-rich families of the Perciformes order of teleost fish. Its members display great morphological diversity, and occupy distinct trophic levels in coastal waters and coral reefs. The cleaning behaviour displayed by some wrasses, such as corkwing wrasse (Symphodus melops), is of particular interest for the salmon aquaculture industry to combat and control sea lice infestation as an alternative to chemicals and pharmaceuticals. There are still few genome assemblies available within this fish family for comparative and functional studies, despite the rapid increase in genome resources generated during the past years.…

Read More »

Friday, July 19, 2019

An improved genome reference for the African cichlid, Metriaclima zebra.

Problems associated with using draft genome assemblies are well documented and have become more pronounced with the use of short read data for de novo genome assembly. We set out to improve the draft genome assembly of the African cichlid fish, Metriaclima zebra, using a set of Pacific Biosciences SMRT sequencing reads corresponding to 16.5× coverage of the genome. Here we characterize the improvements that these long reads allowed us to make to the state-of-the-art draft genome previously assembled from short read data.Our new assembly closed 68 % of the existing gaps and added 90.6Mbp of new non-gap sequence to the…

Read More »

Friday, July 19, 2019

AgIn: Measuring the landscape of CpG methylation of individual repetitive elements.

Determining the methylation state of regions with high copy numbers is challenging for second-generation sequencing, because the read length is insufficient to map reads uniquely, especially when repetitive regions are long and nearly identical to each other. Single-molecule real-time (SMRT) sequencing is a promising method for observing such regions, because it is not vulnerable to GC bias, it produces long read lengths, and its kinetic information is sensitive to DNA modifications.We propose a novel linear-time algorithm that combines the kinetic information for neighboring CpG sites and increases the confidence in identifying the methylation states of those sites. Using a practical…

Read More »

Sunday, July 7, 2019

Comparative Analysis of the Shared Sex-Determination Region (SDR) among Salmonid Fishes.

Salmonids present an excellent model for studying evolution of young sex-chromosomes. Within the genus, Oncorhynchus, at least six independent sex-chromosome pairs have evolved, many unique to individual species. This variation results from the movement of the sex-determining gene, sdY, throughout the salmonid genome. While sdY is known to define sexual differentiation in salmonids, the mechanism of its movement throughout the genome has remained elusive due to high frequencies of repetitive elements, rDNA sequences, and transposons surrounding the sex-determining regions (SDR). Despite these difficulties, bacterial artificial chromosome (BAC) library clones from both rainbow trout and Atlantic salmon containing the sdY region…

Read More »

Sunday, July 7, 2019

Insights into sex chromosome evolution and aging from the genome of a short-lived fish.

The killifish Nothobranchius furzeri is the shortest-lived vertebrate that can be bred in the laboratory. Its rapid growth, early sexual maturation, fast aging, and arrested embryonic development (diapause) make it an attractive model organism in biomedical research. Here, we report a draft sequence of its genome that allowed us to uncover an intra-species Y chromosome polymorphism representing-in real time-different stages of sex chromosome formation that display features of early mammalian XY evolution “in action.” Our data suggest that gdf6Y, encoding a TGF-ß family growth factor, is the master sex-determining gene in N. furzeri. Moreover, we observed genomic clustering of aging-related genes,…

Read More »

Sunday, July 7, 2019

The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment.

BackgroundAntarctic fish have adapted to the freezing waters of the Southern Ocean. Representative adaptations to this harsh environment include a constitutive heat shock response and the evolution of an antifreeze protein in the blood. Despite their adaptations to the cold, genome-wide studies have not yet been performed on these fish due to the lack of a sequenced genome. Notothenia coriiceps, the Antarctic bullhead notothen, is an endemic teleost fish with a circumpolar distribution and makes a good model to understand the genomic adaptations to constant sub-zero temperatures.ResultsWe provide the draft genome sequence and annotation for N. coriiceps. Comparative genome-wide analysis…

Read More »

1 2

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »