Menu
July 7, 2019  |  

Privacy-preserving read mapping using locality sensitive hashing and secure kmer voting

The recent explosion in the amount of available genome sequencing data imposes high computational demands on the tools designed to analyze it. Low-cost cloud computing has the potential to alleviate this burden. However, moving personal genome data analysis to the cloud raises serious privacy concerns. Read alignment is a critical and computationally intensive first step of most genomic data analysis pipelines. While significant effort has been dedicated to optimize the sensitivity and runtime efficiency of this step, few approaches have addressed outsourcing this computation securely to an untrusted party. The few secure solutions that have been proposed either do not scale to whole genome sequencing datasets or are not competitive with the state of the art in read mapping. In this paper, we present BALAUR, a privacy-preserving read mapping algorithm based on locality sensitive hashing and secure kmer voting. BALAUR securely outsources a significant portion of the computation to the public cloud by formulating the alignment task as a voting scheme between encrypted read and reference kmers. Our approach can easily handle typical genome-scale datasets and is highly competitive with non-cryptographic state-of-the-art read aligners in both accuracy and runtime performance on simulated and real read data. Moreover, our approach is significantly faster than state-of-the-art read aligners in long read mapping.


July 7, 2019  |  

Conservation genetics of an endangered grassland butterfly (Oarisma poweshiek) reveals historically high gene flow despite recent and rapid range loss

1. In poorly dispersing species gene flow can be facilitated when suitable habitat is widespread, allowing for increased dispersal between neighbouring locations. The Poweshiek skipperling [Oarisma poweshiek (Parker)], a federally endangered butterfly, has undergone a rapid, recent demographic decline following the loss of tallgrass prairie and fen habitats range wide. The loss of habitat, now restricted geographic range, and poor dispersal ability have left O. poweshiek at increased risk of extinction. 2. We studied the population genetics of six remaining populations of O. poweshiek in order to test the hypothesis that gene flow was historically high despite limited long-distance dispersal capability. Utilising nine microsatellite loci developed by PacBio sequencing, we tested for patterns of isolation by distance, low population genetic structure and alternative gene flow models. 3. Populations from southern Manitoba, Canada to the Lower Peninsula of Michigan, USA are only weakly genetically differentiated despite having low diversity. We found no support for isolation by distance, and Bayesian estimates of historical gene flow support our hypothesis that high levels of gene flow previously connected populations from Michigan to Wisconsin. 4. Prairie grasslands have been reduced tremendously over the past century, but the low mobility of O. poweshiek suggests that rapid loss of populations over the past decade cannot be simply explained by fragmentation of habitat. 5. As a species at high risk of extinction, understanding historical processes of gene flow will allow for informed management decisions with respect to head-starting individuals for population reintroductions and for conserving networks of habitat that will allow for high levels of gene flow.


July 7, 2019  |  

Probabilistic viral quasispecies assembly

Viruses are pathogens that cause infectious diseases. The swarm of virions is subject to the host’s immune pressure and possibly antiviral therapy. It may escape this selective pressure and gain selective advantage by acquiring one or more of the genomic alterations: single-nucleotide variants (SNVs), loss or gain of one or more amino acids, large deletions, for example, due to alternative splicing, or recombination of different strains. Genotypic antiretroviral drug resistance testing is performed via sequencing. Next-generation sequencing (NGS) technologies revolutionized assessing viral genetic diversity experimentally. In viral quasispecies analysis, there are two main goals: the identification of low-frequency variants and haplotype assembly on a whole-genome scale. PacBio performs single-molecule sequencing. This chapter elaborates human haplotyping and its relationship to probabilistic viral haplotype reconstruction methods. Viral quasispecies assembly has the potential to replace the current de facto diversity estimation by SNV calling. With advances in library preparation, increasing sensitivity of sequencing platforms, and more sophisticated models, it might be possible to detect all or most viral strains in a single individual.


July 7, 2019  |  

Capturing pairwise and multi-way chromosomal conformations using chromosomal walks.

Chromosomes are folded into highly compacted structures to accommodate physical constraints within nuclei and to regulate access to genomic information. Recently, global mapping of pairwise contacts showed that loops anchoring topological domains (TADs) are highly conserved between cell types and species. Whether pairwise loops synergize to form higher-order structures is still unclear. Here we develop a conformation capture assay to study higher-order organization using chromosomal walks (C-walks) that link multiple genomic loci together into proximity chains in human and mouse cells. This approach captures chromosomal structure at varying scales. Inter-chromosomal contacts constitute only 7-10% of the pairs and are restricted by interfacing TADs. About half of the C-walks stay within one chromosome, and almost half of those are restricted to intra-TAD spaces. C-walks that couple 2-4 TADs indicate stochastic associations between transcriptionally active, early replicating loci. Targeted analysis of thousands of 3-walks anchored at highly expressed genes support pairwise, rather than hub-like, chromosomal topology at active loci. Polycomb-repressed Hox domains are shown by the same approach to enrich for synergistic hubs. Together, the data indicate that chromosomal territories, TADs, and intra-TAD loops are primarily driven by nested, possibly dynamic, pairwise contacts.


July 7, 2019  |  

MICADo – Looking for mutations in targeted PacBio cancer data: an alignment-free method.

Targeted sequencing is commonly used in clinical application of NGS technology since it enables generation of sufficient sequencing depth in the targeted genes of interest and thus ensures the best possible downstream analysis. This notwithstanding, the accurate discovery and annotation of disease causing mutations remains a challenging problem even in such favorable context. The difficulty is particularly salient in the case of third generation sequencing technology, such as PacBio. We present MICADo, a de Bruijn graph based method, implemented in python, that makes possible to distinguish between patient specific mutations and other alterations for targeted sequencing of a cohort of patients. MICADo analyses NGS reads for each sample within the context of the data of the whole cohort in order to capture the differences between specificities of the sample with respect to the cohort. MICADo is particularly suitable for sequencing data from highly heterogeneous samples, especially when it involves high rates of non-uniform sequencing errors. It was validated on PacBio sequencing datasets from several cohorts of patients. The comparison with two widely used available tools, namely VarScan and GATK, shows that MICADo is more accurate, especially when true mutations have frequencies close to backgound noise. The source code is available at http://github.com/cbib/MICADo.


July 7, 2019  |  

TeloPCR-seq: a high-throughput sequencing approach for telomeres.

We have developed a high-throughput sequencing approach that enables us to determine terminal telomere sequences from tens of thousands of individual Schizosaccharomyces pombe telomeres. This method provides unprecedented coverage of telomeric sequence complexity in fission yeast. S. pombe telomeres are composed of modular degenerate repeats that can be explained by variation in usage of the TER1 RNA template during reverse transcription. Taking advantage of this deep sequencing approach, we find that ‘like’ repeat modules are highly correlated within individual telomeres. Moreover, repeat module preference varies with telomere length, suggesting that existing repeats promote the incorporation of like repeats and/or that specific conformations of the telomerase holoenzyme efficiently and/or processively add repeats of like nature. After the loss of telomerase activity, this sequencing and analysis pipeline defines a population of telomeres with altered sequence content. This approach will be adaptable to study telomeric repeats in other organisms and also to interrogate repetitive sequences throughout the genome that are inaccessible to other sequencing methods.© 2016 Federation of European Biochemical Societies.


July 7, 2019  |  

Efficient, cost-effective, high-throughput, Multilocus Sequencing Typing (MLST) method, NGMLST, and the analytical software program MLSTEZ.

Multilocus sequence typing (MLST) has become the preferred method for genotyping many biological species. It can be used to identify major phylogenetic clades, molecular groups, or subpopulations of a species, as well as individual strains or clones. However, conventional MLST is costly and time consuming, which limits its power for genotyping large numbers of samples. Here, we describe a new MLST method that uses next-generation sequencing, a multiplexing protocol, and appropriate analytical software to provide accurate, rapid, and economical MLST genotyping of 96 or more isolates in a single assay.


July 7, 2019  |  

Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations.

Mutations, the fuel of evolution, are first manifested as rare DNA changes within a population of cells. Although next-generation sequencing (NGS) technologies have revolutionized the study of genomic variation between species and individual organisms, most have limited ability to accurately detect and quantify rare variants among the different genome copies in heterogeneous mixtures of cells or molecules. We describe the technical challenges in characterizing subclonal variants using conventional NGS protocols and the recent development of error correction strategies, both computational and experimental, including consensus sequencing of single DNA molecules. We also highlight major applications for low-frequency mutation detection in science and medicine, describe emerging methodologies and provide our vision for the future of DNA sequencing.


July 7, 2019  |  

Clustering of circular consensus sequences: accurate error correction and assembly of single molecule real-time reads from multiplexed amplicon libraries.

Targeted resequencing with high-throughput sequencing (HTS) platforms can be used to efficiently interrogate the genomes of large numbers of individuals. A critical issue for research and applications using HTS data, especially from long-read platforms, is error in base calling arising from technological limits and bioinformatic algorithms. We found that the community standard long amplicon analysis (LAA) module from Pacific Biosciences is prone to substantial bioinformatic errors that raise concerns about findings based on this pipeline, prompting the need for a new method.A single molecule real-time (SMRT) sequencing-error correction and assembly pipeline, C3S-LAA, was developed for libraries of pooled amplicons. By uniquely leveraging the structure of SMRT sequence data (comprised of multiple low quality subreads from which higher quality circular consensus sequences are formed) to cluster raw reads, C3S-LAA produced accurate consensus sequences and assemblies of overlapping amplicons from single sample and multiplexed libraries. In contrast, despite read depths in excess of 100X per amplicon, the standard long amplicon analysis module from Pacific Biosciences generated unexpected numbers of amplicon sequences with substantial inaccuracies in the consensus sequences. A bootstrap analysis showed that the C3S-LAA pipeline per se was effective at removing bioinformatic sources of error, but in rare cases a read depth of nearly 400X was not sufficient to overcome minor but systematic errors inherent to amplification or sequencing.C3S-LAA uses a divide and conquer processing algorithm for SMRT amplicon-sequence data that generates accurate consensus sequences and local sequence assemblies. Solving the confounding bioinformatic source of error in LAA allowed for the identification of limited instances of errors due to DNA amplification or sequencing of homopolymeric nucleotide tracts. For research and development in genomics, C3S-LAA allows meaningful conclusions and biological inferences to be made from accurately polished sequence output.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.