Menu
July 7, 2019  |  

Whole-genome sequence of Burkholderia sp. strain RPE67, a bacterial gut symbiont of the bean bug Riptortus pedestris.

Burkholderia sp. strain RPE67 is a bacterial symbiont isolated from a field-collected bean bug, Riptortus pedestris. To understand the genetic basis of the insect-microbe symbiosis, we performed whole-genome sequencing of the Burkholderia strain, revealing an 8.69-Mb genome consisting of three chromosomes and three plasmids. Copyright © 2014 Takeshita et al.


July 7, 2019  |  

Evaluation and validation of de novo and hybrid assembly techniques to derive high-quality genome sequences.

To assess the potential of different types of sequence data combined with de novo and hybrid assembly approaches to improve existing draft genome sequences.Illumina, 454 and PacBio sequencing technologies were used to generate de novo and hybrid genome assemblies for four different bacteria, which were assessed for quality using summary statistics (e.g. number of contigs, N50) and in silico evaluation tools. Differences in predictions of multiple copies of rDNA operons for each respective bacterium were evaluated by PCR and Sanger sequencing, and then the validated results were applied as an additional criterion to rank assemblies. In general, assemblies using longer PacBio reads were better able to resolve repetitive regions. In this study, the combination of Illumina and PacBio sequence data assembled through the ALLPATHS-LG algorithm gave the best summary statistics and most accurate rDNA operon number predictions. This study will aid others looking to improve existing draft genome assemblies.All assembly tools except CLC Genomics Workbench are freely available under GNU General Public License.brownsd@ornl.govSupplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.


July 7, 2019  |  

Whole-genome assemblies of 56 Burkholderia species.

Burkholderia is a genus of betaproteobacteria that includes three notable human pathogens: B. cepacia, B. pseudomallei, and B. mallei. While B. pseudomallei and B. mallei are considered potential biowarfare agents, B. cepacia infections are largely limited to cystic fibrosis patients. Here, we present 56 Burkholderia genomes from 8 distinct species. Copyright © 2014 Daligault et al.


July 7, 2019  |  

Absence of genome reduction in diverse, facultative endohyphal bacteria.

Fungi interact closely with bacteria, both on the surfaces of the hyphae and within their living tissues (i.e. endohyphal bacteria, EHB). These EHB can be obligate or facultative symbionts and can mediate diverse phenotypic traits in their hosts. Although EHB have been observed in many lineages of fungi, it remains unclear how widespread and general these associations are, and whether there are unifying ecological and genomic features can be found across EHB strains as a whole. We cultured 11 bacterial strains after they emerged from the hyphae of diverse Ascomycota that were isolated as foliar endophytes of cupressaceous trees, and generated nearly complete genome sequences for all. Unlike the genomes of largely obligate EHB, the genomes of these facultative EHB resembled those of closely related strains isolated from environmental sources. Although all analysed genomes encoded structures that could be used to interact with eukaryotic hosts, pathways previously implicated in maintenance and establishment of EHB symbiosis were not universally present across all strains. Independent isolation of two nearly identical pairs of strains from different classes of fungi, coupled with recent experimental evidence, suggests horizontal transfer of EHB across endophytic hosts. Given the potential for EHB to influence fungal phenotypes, these genomes could shed light on the mechanisms of plant growth promotion or stress mitigation by fungal endophytes during the symbiotic phase, as well as degradation of plant material during the saprotrophic phase. As such, these findings contribute to the illumination of a new dimension of functional biodiversity in fungi.


July 7, 2019  |  

Burkholderia humptydooensis sp. nov., a new species related to Burkholderia thailandensis and the fifth member of the Burkholderia pseudomallei complex.

During routine screening for Burkholderia pseudomallei from water wells in northern Australia in areas where it is endemic, Gram-negative bacteria (strains MSMB43(T), MSMB121, and MSMB122) with a similar morphology and biochemical pattern to B. pseudomallei and B. thailandensis were coisolated with B. pseudomallei on Ashdown’s selective agar. To determine the exact taxonomic position of these strains and to distinguish them from B. pseudomallei and B. thailandensis, they were subjected to a series of phenotypic and molecular analyses. Biochemical and fatty acid methyl ester analysis was unable to distinguish B. humptydooensis sp. nov. from closely related species. With matrix-assisted laser desorption ionization-time of flight analysis, all isolates grouped together in a cluster separate from other Burkholderia spp. 16S rRNA and recA sequence analyses demonstrated phylogenetic placement for B. humptydooensis sp. nov. in a novel clade within the B. pseudomallei group. Multilocus sequence typing (MLST) analysis of the three isolates in comparison with MLST data from 3,340 B. pseudomallei strains and related taxa revealed a new sequence type (ST318). Genome-to-genome distance calculations and the average nucleotide identity of all isolates to both B. thailandensis and B. pseudomallei, based on whole-genome sequences, also confirmed B. humptydooensis sp. nov. as a novel Burkholderia species within the B. pseudomallei complex. Molecular analyses clearly demonstrated that strains MSMB43(T), MSMB121, and MSMB122 belong to a novel Burkholderia species for which the name Burkholderia humptydooensis sp. nov. is proposed, with the type strain MSMB43(T) (American Type Culture Collection BAA-2767; Belgian Co-ordinated Collections of Microorganisms LMG 29471; DDBJ accession numbers CP013380 to CP013382).IMPORTANCEBurkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. The genus Burkholderia consists of a diverse group of species, with the closest relatives of B. pseudomallei referred to as the B. pseudomallei complex. A proposed novel species, B. humptydooensis sp. nov., was isolated from a bore water sample from the Northern Territory in Australia. B. humptydooensis sp. nov. is phylogenetically distinct from B. pseudomallei and other members of the B. pseudomallei complex, making it the fifth member of this important group of bacteria. Copyright © 2017 Tuanyok et al.


July 7, 2019  |  

Two stable variants of Burkholderia pseudomallei strain MSHR5848 express broadly divergent in vitro phenotypes associated with their virulence differences.

Burkholderia pseudomallei (Bp), the agent of melioidosis, causes disease ranging from acute and rapidly fatal to protracted and chronic. Bp is highly infectious by aerosol, can cause severe disease with nonspecific symptoms, and is naturally resistant to multiple antibiotics. However, no vaccine exists. Unlike many Bp strains, which exhibit random variability in traits such as colony morphology, Bp strain MSHR5848 exhibited two distinct and relatively stable colony morphologies on sheep blood agar plates: a smooth, glossy, pale yellow colony and a flat, rough, white colony. Passage of the two variants, designated “Smooth” and “Rough”, under standard laboratory conditions produced cultures composed of > 99.9% of the single corresponding type; however, both could switch to the other type at different frequencies when incubated in certain nutritionally stringent or stressful growth conditions. These MSHR5848 derivatives were extensively characterized to identify variant-associated differences. Microscopic and colony morphology differences on six differential media were observed and only the Rough variant metabolized sugars in selective agar. Antimicrobial susceptibilities and lipopolysaccharide (LPS) features were characterized and phenotype microarray profiles revealed distinct metabolic and susceptibility disparities between the variants. Results using the phenotype microarray system narrowed the 1,920 substrates to a subset which differentiated the two variants. Smooth grew more rapidly in vitro than Rough, yet the latter exhibited a nearly 10-fold lower lethal dose for mice than Smooth. Finally, the Smooth variant was phagocytosed and replicated to a greater extent and was more cytotoxic than Rough in macrophages. In contrast, multiple locus sequence type (MLST) analysis, ribotyping, and whole genome sequence analysis demonstrated the variants’ genetic conservation; only a single consistent genetic difference between the two was identified for further study. These distinct differences shown by two variants of a Bp strain will be leveraged to better understand the mechanism of Bp phenotypic variability and to possibly identify in vitro markers of infection.


July 7, 2019  |  

Quantifying the importance of the rare biosphere for microbial community response to organic pollutants in a freshwater ecosystem.

A single liter of water contains hundreds, if not thousands, of bacterial and archaeal species, each of which typically makes up a very small fraction of the total microbial community (<0.1%), the so-called "rare biosphere." How often, and via what mechanisms, e.g., clonal amplification versus horizontal gene transfer, the rare taxa and genes contribute to microbial community response to environmental perturbations represent important unanswered questions toward better understanding the value and modeling of microbial diversity. We tested whether rare species frequently responded to changing environmental conditions by establishing 20-liter planktonic mesocosms with water from Lake Lanier (Georgia, USA) and perturbing them with organic compounds that are rarely detected in the lake, including 2,4-dichlorophenoxyacetic acid (2,4-D), 4-nitrophenol (4-NP), and caffeine. The populations of the degraders of these compounds were initially below the detection limit of quantitative PCR (qPCR) or metagenomic sequencing methods, but they increased substantially in abundance after perturbation. Sequencing of several degraders (isolates) and time-series metagenomic data sets revealed distinct cooccurring alleles of degradation genes, frequently carried on transmissible plasmids, especially for the 2,4-D mesocosms, and distinct species dominating the post-enrichment microbial communities from each replicated mesocosm. This diversity of species and genes also underlies distinct degradation profiles among replicated mesocosms. Collectively, these results supported the hypothesis that the rare biosphere can serve as a genetic reservoir, which can be frequently missed by metagenomics but enables community response to changing environmental conditions caused by organic pollutants, and they provided insights into the size of the pool of rare genes and species. IMPORTANCE A single liter of water or gram of soil contains hundreds of low-abundance bacterial and archaeal species, the so called rare biosphere. The value of this astonishing biodiversity for ecosystem functioning remains poorly understood, primarily due to the fact that microbial community analysis frequently focuses on abundant organisms. Using a combination of culture-dependent and culture-independent (metagenomics) techniques, we showed that rare taxa and genes commonly contribute to the microbial community response to organic pollutants. Our findings should have implications for future studies that aim to study the role of rare species in environmental processes, including environmental bioremediation efforts of oil spills or other contaminants. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Phenotypic diversity and genotypic flexibility of Burkholderia cenocepacia during long-term chronic infection of cystic fibrosis lungs.

Chronic bacterial infections of the lung are the leading cause of morbidity and mortality in cystic fibrosis patients. Tracking bacterial evolution during chronic infections can provide insights into how host selection pressures-including immune responses and therapeutic interventions-shape bacterial genomes. We carried out genomic and phenotypic analyses of 215 serially collected Burkholderia cenocepacia isolates from 16 cystic fibrosis patients, spanning a period of 2-20 yr and a broad range of epidemic lineages. Systematic phenotypic tests identified longitudinal bacterial series that manifested progressive changes in liquid media growth, motility, biofilm formation, and acute insect virulence, but not in mucoidy. The results suggest that distinct lineages follow distinct evolutionary trajectories during lung infection. Pan-genome analysis identified 10,110 homologous gene clusters present only in a subset of strains, including genes restricted to different molecular types. Our phylogenetic analysis based on 2148 orthologous gene clusters from all isolates is consistent with patient-specific clades. This suggests that initial colonization of patients was likely by individual strains, followed by subsequent diversification. Evidence of clonal lineages shared by some patients was observed, suggesting inter-patient transmission. We observed recurrent gene losses in multiple independent longitudinal series, including complete loss of Chromosome III and deletions on other chromosomes. Recurrently observed loss-of-function mutations were associated with decreases in motility and biofilm formation. Together, our study provides the first comprehensive genome-phenome analyses of B. cenocepacia infection in cystic fibrosis lungs and serves as a valuable resource for understanding the genomic and phenotypic underpinnings of bacterial evolution.© 2017 Lee et al.; Published by Cold Spring Harbor Laboratory Press.


July 7, 2019  |  

Whole-genome sequences of Burkholderia pseudomallei isolates exhibiting decreased meropenem susceptibility.

We report here paired isogenic Burkholderia pseudomallei genomes obtained from three patients receiving intravenous meropenem for melioidosis treatment, with post-meropenem isolates developing decreased susceptibility. Two genomes were finished, and four were drafted to improved high-quality standard. These genomes will be used to identify meropenem resistance mechanisms in B. pseudomallei. Copyright © 2017 Price et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.