Menu
July 7, 2019

Complete genome sequence of Mycobacterium chimaera strain CDC2015-22-71.

Mycobacterium chimaera is a nontuberculous mycobacterium species commonly found in the environment. Here, we report the first complete genome sequence of a strain from the investigation of invasive infections following open-heart surgeries that used contaminated LivaNova Sorin Stockert 3T heater-cooler devices. Copyright © 2017 Hasan et al.


July 7, 2019

Draft genome sequences of Bacillus subtilis strain DKU_NT_01 isolated from traditional Korean food containing soybean (chung-gook-jang).

Here, we report the whole-genome sequence of Bacillus subtilis strain DKU_NT_01 isolated from traditional Korean food containing soybean (chung-gook-jang). The de novo genome of Bacillus subtilis strain DKU_NT_01 has one contig and G+C content of 55.4%, is 4,954,264 bp in length, and contains 5,011 coding sequences (CDSs). Copyright © 2017 Bang et al.


July 7, 2019

Draft genome sequences of two unclassified bacteria, Sphingomonas sp. strains IBVSS1 and IBVSS2, isolated from environmental samples.

We report here the draft genome sequences of Sphingomonas sp. IBVSS1 and IBVSS2, two bacteria assembled from the metagenomes of surface samples from freshwater lakes. The genomes are >99% complete and may represent new species within the Sphingomonas genus, indicating a larger diversity than currently identified. Copyright © 2017 Orr et al.


July 7, 2019

Genome characterization of two bile-isolated Vibrio fluvialis strains: an insight into pathogenicity and bile salt adaption.

Vibrio fluvialis is recognized as an emerging pathogen. However, not much is known about the mechanism of its pathogenesis, and its adaptation to a special niche such as the gall bladder. Here we describe two V. fluvialis strains that cause acute cholecystitis. It is noteworthy that both strains were susceptible to all antibiotics tested, which is in contrast to previous studies, suggesting substantial genetic diversity among V. fluvialis isolates. In agreement with their survival and growth in the gall bladder, the genomes of strains 12605 and 3663 contain a considerable number of genes that confer resistance to bile, including toxR, omp U, tolC, cmeABC, rlpB, yrbK, rpoS, damX and gltK. Furthermore, integrative and conjugative elements (ICEs), virulence factors and prophage regions were also detected in strains 12605 and 3663, reflecting their flexibility in recombination during the evolution of pathogenicity. Comparative analysis of nine available genomes of V. fluvialis revealed a core genome consisting of 3,147 genes. Our results highlight the association of V. fluvialis with a rare disease profile and shed light on the evolution of pathogenesis and niche adaptation of V. fluvialis.


July 7, 2019

Complete genome sequence of Bacillus horikoshii strain 20a from Cuatro Cienegas, Coahuila, Mexico.

We sequenced the Bacillus horikoshii 20a genome, isolated from sediment collected in Cuatro Cienegas, Mexico. We identified genes involved in establishing antagonistic interactions in microbial communities (antibiotic resistance and bacteriocins) and genes related to the metabolism of cyanophycin, a reserve compound and spore matrix material potentially relevant for survival in an oligotrophic environment. Copyright © 2017 Zarza et al.


July 7, 2019

Complete genome sequence of livestock-associated methicillin-resistant Staphylococcus aureus sequence type 398 isolated from swine in the United States.

Methicillin-resistant Staphylococcus aureus (MRSA) colonizes and causes disease in many animal species. Livestock-associated MRSA (LA-MRSA) isolates are represented by isolates of the sequence type 398 (ST398). These isolates are considered to be livestock adapted. This report provides the complete genome sequence of one swine-associated LA-MRSA ST398 isolate from the United States.


July 7, 2019

Complete genome sequence and annotation of the Staphylococcus aureus strain HG001.

Staphylococcus aureus is an opportunistic Gram-positive pathogen responsible for a wide range of infections from minor skin abscesses to life-threatening diseases. Here, we report the draft genome assembly and current annotation of the HG001 strain, a derivative of the RN1 (NCT8325) strain with restored rbsU (a positive activator of SigB). Copyright © 2017 Caldelari et al.


July 7, 2019

Draft genome sequences of two unclassified bacteria, Hydrogenophaga sp. strains IBVHS1 and IBVHS2, isolated from environmental samples.

We report here the draft genome sequences of Hydrogenophaga sp. strains IBVHS1 and IBVHS2, two bacteria assembled from the metagenomes of surface samples from freshwater lakes. The genomes are >95% complete and may represent new species within the Hydrogenophaga genus, indicating a larger diversity than currently identified. Copyright © 2017 Orr et al.


July 7, 2019

Draft genome sequences from a novel clade of Bacillus cereus sensu lato strains, isolated from the International Space Station.

The draft genome sequences of six Bacillus strains, isolated from the International Space Station and belonging to the Bacillus anthracis-B. cereus-B. thuringiensis group, are presented here. These strains were isolated from the Japanese Experiment Module (one strain), U.S. Harmony Node 2 (three strains), and Russian Segment Zvezda Module (two strains). Copyright © 2017 Venkateswaran et al.


July 7, 2019

Complete genome sequence of Sulfuriferula sp. strain AH1, a sulfur-oxidizing autotroph isolated from weathered mine tailings from the Duluth Complex in Minnesota.

We report the closed and annotated genome sequence of Sulfuriferula sp. strain AH1. Strain AH1 has a 2,877,007-bp chromosome that includes a partial Sox system for inorganic sulfur oxidation and a complete nitrogen fixation pathway. It also has a single 39,138-bp plasmid with genes for arsenic and mercury resistance. Copyright © 2017 Jones et al.


July 7, 2019

Complete genome sequence of Bradyrhizobium sp. ORS285, a photosynthetic strain able to establish Nod factor-dependent or Nod factor-independent symbiosis with Aeschynomene legumes.

Here, we report the complete genome sequence of Bradyrhizobium sp. strain ORS285, which is able to nodulate Aeschynomene legumes using two distinct strategies that differ in the requirement of Nod factors. The genome sequence information of this strain will help understanding of the different mechanisms of interaction of rhizobia with legumes. Copyright © 2017 Gully et al.


July 7, 2019

Identification and characterization of the novel colonization factor CS30 based on whole genome sequencing in enterotoxigenic Escherichia coli (ETEC).

The ability to colonize the small intestine is essential for enterotoxigenic Escherichia coli (ETEC) to cause diarrhea. Although 22 antigenically different colonization factors (CFs) have been identified and characterized in ETEC at least 30% of clinical ETEC isolates lack known CFs. Ninety-four whole genome sequenced “CF negative” isolates were searched for novel CFs using a reverse genetics approach followed by phenotypic analyses. We identified a novel CF, CS30, encoded by a set of seven genes, csmA-G, related to the human CF operon CS18 and the porcine CF operon 987P (F6). CS30 was shown to be thermo-regulated, expressed at 37?°C, but not at 20?°C, by SDS-page and mass spectrometry analyses as well as electron microscopy imaging. Bacteria expressing CS30 were also shown to bind to differentiated human intestinal Caco-2 cells. The genes encoding CS30 were located on a plasmid (E873p3) together with the genes encoding LT and STp. PCR screening of ETEC isolates revealed that 8.6% (n?=?13) of “CF negative” (n?=?152) and 19.4% (n?=?13) of “CF negative” LT?+?STp (n?=?67) expressing isolates analyzed harbored CS30. Hence, we conclude that CS30 is common among “CF negative” LT?+?STp isolates and is associated with ETEC that cause diarrhea.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.