Menu
July 7, 2019  |  

Dissemination of the mcr-1 colistin resistance gene.

Since our first report on plasmid- mediated colistin resistance gene mcr-1,1 strains previously collected in seven countries (Denmark, the Netherlands, Laos, Nigeria, Thailand, France, and the UK) have been found to carry mcr-1.2–6 Furthermore, the sequences in GenBank show that mcr-1 might also be circulating in Portugal and Malaysia. The earliest mcr-1- positive strain was collected from cattle in France in 2008 (GenBank accession number LMBK01000308). These findings confirm our initial concern that mcr-1 could have already disseminated worldwide.


July 7, 2019  |  

Genome sequencing and analysis of the first complete genome of Lactobacillus kunkeei strain MP2, an Apis mellifera gut isolate

Background. The honey bee (Apis mellifera) is the most important pollinator in agriculture worldwide. However, the number of honey bees has fallen significantly since 2006, becoming a huge ecological problem nowadays. The principal cause is CCD, or Colony Collapse Disorder, characterized by the seemingly spontaneous abandonment of hives by their workers. One of the characteristics of CCD in honey bees is the alteration of the bacterial communities in their gastrointestinal tract, mainly due to the decrease of Firmicutes populations, such as the Lactobacilli. At this time, the causes of these alterations remain unknown. We recently isolated a strain of Lactobacillus kunkeei (L. kunkeei strain MP2) from the gut of Chilean honey bees. L. kunkeei, is one of the most commonly isolated bacterium from the honey bee gut and is highly versatile in different ecological niches. In this study, we aimed to elucidate in detail, the L. kunkeei genetic background and perform a comparative genome analysis with other Lactobacillus species. Methods. L. kunkeei MP2 was originally isolated from the guts of Chilean A. mellifera individuals. Genome sequencing was done using Pacific Biosciences single-molecule real-time sequencing technology. De novo assembly was performed using Celera assembler. The genome was annotated using Prokka, and functional information was added using the EggNOG 3.1 database. In addition, genomic islands were predicted using IslandViewer, and pro-phage sequences using PHAST. Comparisons between L. kunkeei MP2 with other L. kunkeei, and Lactobacillus strains were done using Roary. Results. The complete genome of L. kunkeei MP2 comprises one circular chromosome of 1,614,522 nt. with a GC content of 36,9%. Pangenome analysis with 16 L. kunkeei strains, identified 113 unique genes, most of them related to phage insertions. A large and unique region of L. kunkeei MP2 genome contains several genes that encode for phage structural protein and replication components. Comparative analysis of MP2 with other Lactobacillus species, identified several unique genes of L. kunkeei MP2 related with metabolism, biofilm generation, survival under stress conditions, and mobile genetic elements (MGEs). Discussion. The presence of multiple mobile genetic elements, including phage sequences, suggest a high degree of genetic variability in L. kunkeei. Its versatility and ability to survive in different ecological niches (bee guts, flowers, fruits among others) could be given by its genetic capacity to change and adapt to different environments. L. kunkeei could be a new source of Lactobacillus with beneficial properties. Indeed, L. kunkeei MP2 could play an important role in honey bee nutrition through the synthesis of components as isoprenoids.


July 7, 2019  |  

Mechanisms involved in acquisition of blaNDM genes by IncA/C2 and IncFIIY plasmids.

blaNDM genes confer carbapenem resistance and have been identified on transferable plasmids belonging to different incompatibility (Inc) groups. Here we present the complete sequences of four plasmids carrying a blaNDM gene, pKP1-NDM-1, pEC2-NDM-3, pECL3-NDM-1 and pEC4-NDM-6, from four clinical samples originating from four different patients. Different plasmids carry segments that align to different parts of the blaNDM region found on Acinetobacter plasmids. pKP1-NDM-1 and pEC2-NDM-3, from Klebsiella pneumoniae and Escherichia coli, respectively, were identified as type 1 IncA/C2 plasmids with almost identical backbones. Different regions carrying blaNDM are inserted in different locations in the antibiotic resistance island known as ARI-A and ISCR1 may have been involved in acquisition of blaNDM-3 by pEC2-NDM-3. pECL3-NDM-1 and pEC4-NDM-6, from Enterobacter cloacae and E. coli, respectively, have similar IncFIIY backbones but different regions carrying blaNDM are found in different locations. Tn3-derived Inverted-repeat Transposable Elements (TIME) appear to have been involved in acquisition of blaNDM-6 by pEC4-NDM-6 and the rmtC 16S rRNA methylase gene by IncFIIY plasmids. Characterisation of these plasmids further demonstrates that even very closely related plasmids may have acquired blaNDM genes by different mechanisms. These findings also illustrate the complex relationships between antimicrobial resistance genes, transposable elements and plasmids and provide insights into the possible routes for transmission of blaNDM genes amongst species of the Enterobacteriaceae family. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Prediction of putative resistance islands in a carbapenem-resistant Acinetobacter baumannii global clone 2 clinical isolate.

We investigated the whole genome sequence (WGS) of a carbapenem-resistant Acinetobacter baumannii isolate belonging to the global clone 2 (GC2) and predicted resistance islands using a software tool.A. baumannii strain YU-R612 was isolated from the sputum of a 61-yr-old man with sepsis. The WGS of the YU-R612 strain was obtained by using the PacBio RS II Sequencing System (Pacific Biosciences Inc., USA). Antimicrobial resistance genes and resistance islands were analyzed by using ResFinder and Genomic Island Prediction software (GIPSy), respectively.The YU-R612 genome consisted of a circular chromosome (ca. 4,075 kb) and two plasmids (ca. 74 kb and 5 kb). Its sequence type (ST) under the Oxford scheme was ST191, consistent with assignment to GC2. ResFinder analysis showed that YU-R612 possessed the following resistance genes: four ß-lactamase genes bla(ADC-30), bla(OXA-66), bla(OXA-23), and bla(TEM-1); armA, aadA1, and aacA4 as aminoglycoside resistance-encoding genes; aac(6′)Ib-cr for fluoroquinolone resistance; msr(E) for macrolide, lincosamide, and streptogramin B resistance; catB8 for phenicol resistance; and sul1 for sulfonamide resistance. By GIPSy analysis, six putative resistant islands (PRIs) were determined on the YU-R612 chromosome. Among them, PRI1 possessed two copies of Tn2009 carrying bla(OXA-23), and PRI5 carried two copies of a class I integron carrying sul1 and armA genes.By prediction of resistance islands in the carbapenem-resistant A. baumannii YU-R612 GC2 strain isolated in Korea, PRIs were detected on the chromosome that possessed Tn2009 and class I integrons. The prediction of resistance islands using software tools was useful for analysis of the WGS.


July 7, 2019  |  

Complete nucleotide sequence of pH11, an IncHI2 plasmid conferring multi-antibiotic resistance and multi-heavy metal resistance genes in a clinical Klebsiella pneumoniae isolate.

The complete 284,628bp sequence of pH11, an IncHI2 plasmid, was determined through single-molecule, real-time (SMRT) sequencing. Harbored by a clinical Klebsiella pneumoniae strain H11, and isolated in Beijing, this plasmid contains multiple antibiotic resistance genes, including catA2, aac(6′)-Ib, strB, strA, dfrA19, blaTEM-1, blaSHV-12, sul1, qacE delta 1, ereA, arr2, and aac3. The aac(6′)-Ib is carried by a class I integron. Plasmid pH11 also carries several genes associated with resistance to heavy metals, such as tellurium, mercury, cobalt, zinc, nickel, copper, lead and cadmium. This plasmid exhibits numerous characteristics, including HipBA and RelBE toxin-antitoxin systems, two major transfer (Tra) regions closely related to those of Salmonella enterica serovar plasmid pRH-R27, a type II restriction modification system (EcoRII R-M system), several methyltransferases and methylases and genes encoding Hha and StpA. These characteristics suggest that pH11 may adapt to various hosts and environments. Multiple insertion sequence elements, transposases, recombinases, resolvases and integrases are scattered throughout pH11. The presence of these genes may indicate that horizontal gene transfer occurs frequently in pH11 and thus may facilitate the dissemination of antimicrobial resistance determinants. Our data suggest that pH11 is a chimera gradually assembled through the integration of different horizontally acquired DNA segments via transposition or homologous recombination. Copyright © 2016 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Antibiotic resistance mechanisms of Myroides sp.

Bacteria of the genus Myroides (Myroides spp.) are rare opportunistic pathogens. Myroides sp. infections have been reported mainly in China. Myroides sp. is highly resistant to most available antibiotics, but the resistance mechanisms are not fully elucidated. Current strain identification methods based on biochemical traits are unable to identify strains accurately at the species level. While 16S ribosomal RNA (rRNA) gene sequencing can accurately achieve this, it fails to give information on the status and mechanisms of antibiotic resistance, because the 16S rRNA sequence contains no information on resistance genes, resistance islands or enzymes. We hypothesized that obtaining the whole genome sequence of Myroides sp., using next generation sequencing methods, would help to clarify the mechanisms of pathogenesis and antibiotic resistance, and guide antibiotic selection to treat Myroides sp. infections. As Myroides sp. can survive in hospitals and the environment, there is a risk of nosocomial infections and pandemics. For better management of Myroides sp. infections, it is imperative to apply next generation sequencing technologies to clarify the antibiotic resistance mechanisms in these bacteria.


July 7, 2019  |  

Dynamics of mutations during development of resistance by Pseudomonas aeruginosa against five antibiotics.

Pseudomonas aeruginosa is an opportunistic pathogen that causes considerable morbidity and mortality, specifically in the intensive care. Antibiotic resistant variants of this organism are more difficult to treat and cause substantial extra costs compared to susceptible strains. In the laboratory, P. aeruginosa rapidly developed resistance against five medically relevant antibiotics upon exposure to step-wise increasing concentrations. At several time points during the acquisition of resistance samples were taken for whole genome sequencing. The increase of MIC for ciprofloxacin was linked to specific mutations in gyrA, parC and gyrB, appearing sequentially. In the case of tobramycin, mutations were induced in fusA, HP02880, rplB and capD The MIC for the beta-lactam compounds meropenem, ceftazidime and the combination piperacillin/tazobactam correlated linearly with the beta-lactamase activity, but not always with individual mutations. The genes that were mutated during development of beta-lactam resistance differed for each antibiotic. A quantitative relationship between the frequency of mutations and the increase in resistance could not be established for any of the antibiotics. When the adapted strains are grown in the absence of the antibiotic, some mutations remained and others were reverted, but this reversal did not necessarily lower the MIC. The increased MIC came at the cost of moderately reduced cellular functions, or somewhat lower growth rate. In all cases except ciprofloxacin, the increase of resistance seems to be the result of a complex interaction between several cellular systems, rather than individual mutations. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Complete genome sequence of a CTX-M-15-producing Escherichia coli strain from the H30Rx subclone of sequence type 131 from a patient with recurrent urinary tract infections, closely related to a lethal urosepsis isolate from the patient’s sister.

We report here the complete genome sequence, including five plasmid sequences, of Escherichia coli sequence type 131 (ST131) strain JJ1887. The strain was isolated in 2007 in the United States from a patient with recurrent cystitis, whose caregiver sister died from urosepsis caused by a nearly identical strain. Copyright © 2016 Johnson et al.


July 7, 2019  |  

Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae.

Antibiotic resistance is a major public health threat, further complicated by unexplained treatment failures caused by bacteria that appear antibiotic susceptible. We describe an Enterobacter cloacae isolate harbouring a minor subpopulation that is highly resistant to the last-line antibiotic colistin. This subpopulation was distinct from persisters, became predominant in colistin, returned to baseline after colistin removal and was dependent on the histidine kinase PhoQ. During murine infection, but in the absence of colistin, innate immune defences led to an increased frequency of the resistant subpopulation, leading to inefficacy of subsequent colistin therapy. An isolate with a lower-frequency colistin-resistant subpopulation similarly caused treatment failure but was misclassified as susceptible by current diagnostics once cultured outside the host. These data demonstrate the ability of low-frequency bacterial subpopulations to contribute to clinically relevant antibiotic resistance, elucidating an enigmatic cause of antibiotic treatment failure and highlighting the critical need for more sensitive diagnostics.


July 7, 2019  |  

The challenges of implementing next generation sequencing across a large healthcare system, and the molecular epidemiology and antibiotic susceptibilities of carbapenemase-producing bacteria in the healthcare system of the U.S. Department of Defense.

We sought to: 1) provide an overview of the genomic epidemiology of an extensive collection of carbapenemase-producing bacteria (CPB) collected in the U.S. Department of Defense health system; 2) increase awareness of the public availability of the sequences, isolates, and customized antimicrobial resistance database of that system; and 3) illustrate challenges and offer mitigations for implementing next generation sequencing (NGS) across large health systems.Prospective surveillance and system-wide implementation of NGS.288-hospital healthcare network.All phenotypically carbapenem resistant bacteria underwent CarbaNP® testing and PCR, followed by NGS. Commercial (Newbler and Geneious), on-line (ResFinder), and open-source software (Btrim, FLASh, Bowtie2, an Samtools) were used for assembly, SNP detection and clustering. Laboratory capacity, throughput, and response time were assessed. From 2009 through 2015, 27,000 multidrug-resistant Gram-negative isolates were submitted. 225 contained carbapenemase-encoding genes (most commonly blaKPC, blaNDM, and blaOXA23). These were found in 15 species from 146 inpatients in 19 facilities. Genetically related CPB were found in more than one hospital. Other clusters or outbreaks were not clonal and involved genetically related plasmids, while some involved several unrelated plasmids. Relatedness depended on the clustering algorithm used. Transmission patterns of plasmids and other mobile genetic elements could not be determined without ultra-long read, single-molecule real-time sequencing. 80% of carbapenem-resistant phenotypes retained susceptibility to aminoglycosides, and 70% retained susceptibility to fluoroquinolones. However, among the CPB-confirmed genotypes, fewer than 25% retained susceptibility to aminoglycosides or fluoroquinolones.Although NGS is increasingly acclaimed to revolutionize clinical practice, resource-constrained environments, large or geographically dispersed healthcare networks, and military or government-funded public health laboratories are likely to encounter constraints and challenges as they implement NGS across their health systems. These include lack of standardized definitions and quality control metrics, limitations of short-read sequencing, insufficient bandwidth, and the current limited availability of very expensive and scarcely available sequencing platforms. Possible solutions and mitigations are also proposed.


July 7, 2019  |  

Genome sequence of the multiantibiotic-resistant Enterococcus faecium strain C68 and insights on the pLRM23 colonization plasmid.

Enterococcus faecium infections are a rising concern in hospital settings. Vancomycin-resistant enterococci colonize the gastrointestinal tract and replace nonresistant strains, complicating the treatment of debilitated patients. Here, we present a polished genome of the multiantibiotic-resistant strain C68, which was obtained as a clinical isolate and is a useful experimental strain. Copyright © 2016 García-Solache and Rice.


July 7, 2019  |  

Complete genome sequence of Enterococcus faecium ATCC 700221.

We report the complete genome sequence of a vancomycin-resistant isolate of Enterococcus faecium derived from human feces. The genome comprises one chromosome of 2.9 Mb and three plasmids. The strain harbors a plasmid-borne vanA-type vancomycin resistance locus and is a member of multilocus sequencing type (MLST) cluster ST-17. Copyright © 2016 McKenney et al.


July 7, 2019  |  

Microevolution of monophasic Salmonella Typhimurium during epidemic, United Kingdom, 2005-2010.

Microevolution associated with emergence and expansion of new epidemic clones of bacterial pathogens holds the key to epidemiologic success. To determine microevolution associated with monophasic Salmonella Typhimurium during an epidemic, we performed comparative whole-genome sequencing and phylogenomic analysis of isolates from the United Kingdom and Italy during 2005-2012. These isolates formed a single clade distinct from recent monophasic epidemic clones previously described from North America and Spain. The UK monophasic epidemic clones showed a novel genomic island encoding resistance to heavy metals and a composite transposon encoding antimicrobial drug resistance genes not present in other Salmonella Typhimurium isolates, which may have contributed to epidemiologic success. A remarkable amount of genotypic variation accumulated during clonal expansion that occurred during the epidemic, including multiple independent acquisitions of a novel prophage carrying the sopE gene and multiple deletion events affecting the phase II flagellin locus. This high level of microevolution may affect antigenicity, pathogenicity, and transmission.


July 7, 2019  |  

Complete genome sequence of the Mycobacterium immunogenum type strain CCUG 47286.

Here, we report the complete genome sequence of Mycobacterium immunogenum type strain CCUG 47286, a nontuberculous mycobacterium. The whole genome has 5,573,781 bp and covers as many as 5,484 predicted genes. This genome contributes to the task of closing the still-existing gap of genomes of rapidly growing mycobacterial type strains. Copyright © 2016 Jaén-Luchoro et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.