Menu
July 7, 2019

Study of mesophilic Aeromonas salmonicida A527 strain sheds light on the species’ lifestyles and taxonomic dilemma.

The Gram-negative bacterium Aeromonas salmonicida contains five subspecies: salmonicida, smithia, achromogenes, masoucida and pectinolytica. Pectinolytica is a mesophilic subspecies with the ability to thrive at a wide range of temperatures, including 37°C, while the four other subspecies are psychrophilic, restricted to lower temperatures. The psychrophilic subspecies are known to infect a wide range of fishes. However, there is no evidence of pathogenicity for the mesophilic subspecies pectinolytica. Study of the differences between the mesophilic and psychrophilic subspecies is hampered by the lack of completely sequenced and closed genomes from the mesophilic subspecies. A previous study reported that insertion sequences, which can induce genomic rearrangements at temperatures around 25°C, could be one of the determinants explaining the differences in lifestyle (mesophilic or psychrophilic) between the subspecies. In this study, the genome of mesophilic strain A527 of A. salmonicida was sequenced, closed and analyzed to investigate the mesophilic-psychrophilic discrepancy. This reference genome supports the hypothesis that insertion sequences are major determinants of the lifestyle differences between the A. salmonicida subspecies. Moreover, the phylogenetic analysis performed to position strain A527 within the taxonomy raises an issue regarding the intraspecies structure of A. salmonicida.© FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019

A blaOXA-181-harbouring multi-resistant ST147 Klebsiella pneumoniae isolate from Pakistan that represent an intermediate stage towards pan-drug resistance.

Carbapenem resistant Klebsiella pneumoniae (CR-KP) infections are an ever-increasing global issue, especially in the Indian subcontinent. Here we report genetic insight into a blaOXA-181 harbouring Klebsiella pneumoniae, belonging to the pandemic lineage ST147, that represents an intermediate stage towards pan-drug resistance. The CR-KP isolate DA48896 was isolated from a patient from Pakistan and was susceptible only to tigecycline and colistin. It harboured blaOXA-181 and was assigned to sequence type ST147. Analysis from whole genome sequencing revealed a very high sequence similarity to the previously sequenced pan-resistant K. pneumoniae isolate MS6671 from the United Arab Emirates. The two isolates are very closely related with only 46 chromosomal nucleotide differences, 14 indels and differences in plasmid content. Both carry a substantial number of plasmid-borne and chromosomally encoded resistance determinants. Interestingly, the two differences in susceptibility between the isolates could be attributed to DA48896 lacking an insertion of blaOXA-181 into the mgrB gene that results in colistin resistance in MS6671 and SNPs affecting AcrAB efflux pump expression likely to result in tigecycline resistance. These differences between the otherwise very similar isolates indicate that strong selection has occurred for resistance towards these last-resort drugs and illustrates the trajectory of resistance evolution of OXA-181-producing versions of the ST147 international risk clone.


July 7, 2019

Complete genome sequence and comparative genomics of the golden pompano (Trachinotus ovatus) pathogen, Vibrio harveyistrain QT520.

Vibrio harveyi is a Gram-negative, halophilic bacterium that is an opportunistic pathogen of commercially farmed marine vertebrate species. To understand the pathogenicity of this species, the genome of V. harveyi QT520 was analyzed and compared to that of other strains. The results showed the genome of QT520 has two unique circular chromosomes and three endogenous plasmids, totaling 6,070,846 bp with a 45% GC content, 5,701 predicted ORFs, 134 tRNAs and 37 rRNAs. Common virulence factors, including ACF, IlpA, OmpU, Flagellin, Cya, Hemolysin and MARTX, were detected in the genome, which are likely responsible for the virulence of QT520. The results of genomes comparisons with strains ATCC 33843 (392 (MAV)) and ATCC 43516 showed that greater numbers genes associated with types I, II, III, IV and VI secretion systems were detected in QT520 than in other strains, suggesting that QT520 is a highly virulent strain. In addition, three plasmids were only observed in the complete genome sequence of strain QT520. In plasmid p1 of QT520, specific virulence factors (cyaB, hlyB and rtxA) were identified, suggesting that the pathogenicity of this strain is plasmid-associated. Phylogenetic analysis of 12 complete Vibrio sp. genomes using ANI values, core genes and MLST revealed that QT520 was most closely related to ATCC 33843 (392 (MAV)) and ATCC 43516, suggesting that QT520 belongs to the species V. harveyi. This report is the first to describe the complete genome sequence of a V. harveyi strain isolated from an outbreak in a fish species in China. In addition, to the best of our knowledge, this report is the first to compare the V. harveyi genomes of several strains. The results of this study will expand our understanding of the genome, genetic characteristics, and virulence factors of V. harveyi, setting the stage for studies of pathogenesis, diagnostics, and disease prevention.


July 7, 2019

On the (im)possibility of reconstructing plasmids from whole-genome short-read sequencing data.

To benchmark algorithms for automated plasmid sequence reconstruction from short-read sequencing data, we selected 42 publicly available complete bacterial genome sequences spanning 12 genera, containing 148 plasmids. We predicted plasmids from short-read data with four programs (PlasmidSPAdes, Recycler, cBar and PlasmidFinder) and compared the outcome to the reference sequences. PlasmidSPAdes reconstructs plasmids based on coverage differences in the assembly graph. It reconstructed most of the reference plasmids (recall=0.82), but approximately a quarter of the predicted plasmid contigs were false positives (precision=0.75). PlasmidSPAdes merged 84?% of the predictions from genomes with multiple plasmids into a single bin. Recycler searches the assembly graph for sub-graphs corresponding to circular sequences and correctly predicted small plasmids, but failed with long plasmids (recall=0.12, precision=0.30). cBar, which applies pentamer frequency analysis to detect plasmid-derived contigs, showed a recall and precision of 0.76 and 0.62, respectively. However, cBar categorizes contigs as plasmid-derived and does not bin the different plasmids. PlasmidFinder, which searches for replicons, had the highest precision (1.0), but was restricted by the contents of its database and the contig length obtained fromde novoassembly (recall=0.36). PlasmidSPAdes and Recycler detected putative small plasmids (<10?kbp), which were also predicted as plasmids by cBar, but were absent in the original assembly. This study shows that it is possible to automatically predict small plasmids. Prediction of large plasmids (>50?kbp) containing repeated sequences remains challenging and limits the high-throughput analysis of plasmids from short-read whole-genome sequencing data.


July 7, 2019

Genomic characterization of a local epidemic Pseudomonas aeruginosa reveals specific features of the widespread clone ST395.

Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen with several clones being frequently associated with outbreaks in hospital settings. ST395 is among these so-called ‘international’ clones. We aimed here to define the biological features that could have helped the implantation and spread of the clone ST395 in hospital settings. The complete genome of a multidrug resistant index isolate (DHS01) of a large hospital outbreak was analysed. We identified DHS01-specific genetic elements, among which were identified those shared with a panel of six independent ST395 isolates responsible for outbreaks in other hospitals. DHS01 has the fifth largest chromosome of the species (7.1 Mbp), with most of its 1555 accessory genes borne by either genomic islands (GIs,n=48) or integrative and conjugative elements (ICEs,n=5). DHS01 is multidrug resistant mostly due to chromosomal mutations. It displayed signatures of adaptation to chronic infection in part due to the loss of a 131 kbp chromosomal fragment. Four GIs were specific to the clone ST395 and contained genes involved in metabolism (GI-4), in virulence (GI-6) and in resistance to copper (GI-7). GI-7 harboured an array of six copper transporters and was shared with non-pathogenicPseudomonassp. retrieved from copper-contaminated environments. Copper resistance was confirmed phenotypically in all other ST395 isolates and possibly accounted for the spreading capability of the clone in hospital outbreaks, where water networks have been incriminated. This suggests that genes transferred from copper-polluted environments may have favoured the implantation and spread of the international cloneP. aeruginosaST395 in hospital settings.


July 7, 2019

Trajectories and drivers of genome evolution in surface-associated marine Phaeobacter.

The extent of genome divergence and the evolutionary events leading to speciation of marine bacteria have mostly been studied for (locally) abundant, free-living groups. The genus Phaeobacter is found on different marine surfaces, seems to occupy geographically disjunct habitats, and is involved in different biotic interactions, and was therefore targeted in the present study. The analysis of the chromosomes of 32 closely related but geographically spread Phaeobacter strains revealed an exceptionally large, highly syntenic core genome. The flexible gene pool is constantly but slightly expanding across all Phaeobacter lineages. The horizontally transferred genes mostly originated from bacteria of the Roseobacter group and horizontal transfer most likely was mediated by gene transfer agents. No evidence for geographic isolation and habitat specificity of the different phylogenomic Phaeobacter clades was detected based on the sources of isolation. In contrast, the functional gene repertoire and physiological traits of different phylogenomic Phaeobacter clades were sufficiently distinct to suggest an adaptation to an associated lifestyle with algae, to additional nutrient sources, or toxic heavy metals. Our study reveals that the evolutionary trajectories of surface-associated marine bacteria can differ significantly from free-living marine bacteria or marine generalists.© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019

Genome misclassification of Klebsiella variicola and Klebsiella quasipneumoniae isolated from plants, animals and humans

Objective. Due to the fact that K. variicola, K. quasipneumoniae and K. pneumoniae are closely related bacterial species, misclassification can occur due to mistakes either in normal biochemical tests or during submission to public databases. The objective of this work was to identify K. variicola and K. quasipneumoniae genomes misclassified in GenBank database. Materials and methods. Both rpoB phylogenies and average nucleotide identity (ANI) were used to identify a significant number of misclassified Klebsiella spp. genomes. Results. Here we report an update of K. variicola and K. quasipneumoniae genomes correctly classified and a list of isolated genomes obtained from humans, plants, animals and insects, described originally as K. pneumoniae or K. variicola, but known now to be misclassified. Conclusions. This work contributes to recognize the extensive presence of K. variicola and K. quasipneumoniae isolates in diverse sites and samples.


July 7, 2019

Characterization of ESBL disseminating plasmids.

Bacteria producing extended-spectrum ß-lactamases (ESBLs) constitute a globally increasing problem that contributes to treatment complications and elevated death rates. The extremely successful dissemination by ESBL-producing Enterobacteriaceae during the latest decades is a result of the combination of mobilization, evolution and horizontal spread of ß-lactamase genes on plasmids. In parallel, spread of these plasmids to particularly well-adapted bacterial clones (outbreak clones) has expanded. In this review we describe ESBL-producing bacteria and the genetic mechanisms for dissemination of ESBL resistance. We describe available methodology for studying plasmids and the importance of including plasmids in epidemiological typing as natural parts of the organisms. Plasmids play a fundamental role in how resistance arises and disseminates.


July 7, 2019

Wide geographical dissemination of the multiresistant Staphylococcus capitis NRCS-A clone in neonatal intensive-care units.

Nosocomial late-onset sepsis represents a frequent cause of morbidity and mortality in preterm neonates. The Staphylococcus capitis clone NRCS-A has been previously described as an emerging cause of nosocomial bacteraemia in French neonatal intensive-care units (NICUs). In this study, we aimed to explore the possible unrecognized dissemination of this clone on a larger geographical scale. One hundred methicillin-resistant S. capitis strains isolated from neonates (n = 86) and adult patients (n = 14) between 2000 and 2013 in four different countries (France, Belgium, the UK, and Australia) were analysed with SmaI pulsed-field gel electrophoresis (PFGE) and dru typing. The vast majority of NICU strains showed the NRCS-A pulsotype and the dt11c type (96%). We then randomly selected 14 isolates (from neonates, n = 12, three per country; from adult patients, n = 2), considered to be a subset of representative isolates, and performed further molecular typing (SacII PFGE, SCCmec typing, and multilocus sequence typing-like analysis), confirming the clonality of the S. capitis strains isolated from neonates, despite their distant geographical origin. Whole genome single-nucleotide polymorphism-based phylogenetic analysis of five NICU isolates (from the different countries) attested to high genetic relatedness within the NRCS-A clone. Finally, all of the NRCS-A strains showed multidrug resistance (e.g. methicillin and aminoglycoside resistance, and decreased vancomycin susceptibility), with potential therapeutic implications for infected neonates. In conclusion, this study represents the first report of clonal dissemination of methicillin-resistant coagulase-negative Staphylococcus clone on a large geographical scale. Questions remain regarding the origin and means of international spread, and the reasons for this clone’s apparent predilection for neonates. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.


July 7, 2019

Complete Sequences and Characterization of Two Novel Plasmids Carrying aac(6′)-Ib-cr and qnrS Gene in Shigella flexneri.

The complete sequences of two previously reported plasmids carrying plasmid-mediated quinolone resistance genes from Shigella flexneri in China have not been available. The present study using the p5-C3 assembly method revealed that (1) the plasmid pSF07201 with aac(6′)-Ib-cr had 75,335?bp with antibiotic resistance genes CTX-M-3, TEM-1, and FosA3; (2) seven fragments of pSF07201 had more than 99% homology with the seven corresponding plasmids; (3) the other plasmid pSF07202 with qnrS had 47,669?bp with antibiotic resistance gene TEM-1 and 99.95% homology with a segment of pKF362122, which has the qnrS gene from location 162,490 to 163,146. A conjugation and electrotransformation experiment suggested that these two plasmids might horizontally transfer between and coexist in Escherichia coli J53 and S. flexneri 2a 301. Either the aac(6′)-Ib-cr or qnrS gene contributed to, but only the coexistence of the two genes conferred to the resistance to ciprofloxacin in these two strains. To the best of our knowledge, this is the first report of the complete sequences of the aac(6′)-Ib-cr- and qnrS-positive plasmids in Shigella isolates. Our findings indicate that two genes probably evolve through horizontal plasmid transfer between the different bacterial types.


July 7, 2019

High incidence of invasive group A Streptococcus disease caused by strains of uncommon emm types in Thunder Bay, Ontario, Canada.

An outbreak of type emm59 invasive group A Streptococcus (iGAS) disease was declared in 2008 in Thunder Bay District, Northwestern Ontario, two years after a country-wide emm59 epidemic was recognized in Canada. Despite a declining number of emm59 infections since 2010, numerous cases of iGAS disease continue to be reported in the area. We collected clinical information on all iGAS cases recorded in Thunder Bay District from 2008-2013. We also emm typed and sequenced the genomes of all available strains isolated in 2011-2013 from iGAS infections, and from severe cases of soft tissue infections. We used whole-genome data to investigate the population structure of GAS strains of the most frequently isolated emm types. We report increased incidence of iGAS in Thunder Bay compared to the metropolitan area of Toronto/Peel and the province of Ontario. Illicit drug use, alcohol abuse, homelessness and hepatitis C infection were underlying diseases or conditions that might have predisposed patients to iGAS disease. Most cases were caused by clonal strains of “skin” or “generalist” emm types (i.e. emm82, emm87, emm101, emm4, emm83, and emm114), uncommonly seen in other areas of the province. We observed rapid waxing and waning of emm types causing disease and their replacement by other emm types associated with the same tissue tropisms. Thus, iGAS disease in Thunder Bay District predominantly affects a select population of disadvantaged persons and is caused by clonally related strains of a few “skin” and “generalist” emm types less commonly associated with iGAS in other areas of Ontario. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 7, 2019

OxyR-dependent formation of DNA methylation patterns in OpvABOFF and OpvABON cell lineages of Salmonella enterica.

Phase variation of the Salmonella enterica opvAB operon generates a bacterial lineage with standard lipopolysaccharide structure (OpvAB(OFF)) and a lineage with shorter O-antigen chains (OpvAB(ON)). Regulation of OpvAB lineage formation is transcriptional, and is controlled by the LysR-type factor OxyR and by DNA adenine methylation. The opvAB regulatory region contains four sites for OxyR binding (OBSA-D), and four methylatable GATC motifs (GATC1-4). OpvAB(OFF) and OpvAB(ON) cell lineages display opposite DNA methylation patterns in the opvAB regulatory region: (i) in the OpvAB(OFF) state, GATC1 and GATC3 are non-methylated, whereas GATC2 and GATC4 are methylated; (ii) in the OpvAB(ON) state, GATC2 and GATC4 are non-methylated, whereas GATC1 and GATC3 are methylated. We provide evidence that such DNA methylation patterns are generated by OxyR binding. The higher stability of the OpvAB(OFF) lineage may be caused by binding of OxyR to sites that are identical to the consensus (OBSA and OBSc), while the sites bound by OxyR in OpvAB(ON) cells (OBSB and OBSD) are not. In support of this view, amelioration of either OBSB or OBSD locks the system in the ON state. We also show that the GATC-binding protein SeqA and the nucleoid protein HU are ancillary factors in opvAB control.© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.


July 7, 2019

Complete genome sequence of Acinetobacter baumannii XH386 (ST208), a multi-drug resistant bacteria isolated from pediatric hospital in China.

Acinetobacter baumannii is an important bacterium that emerged as a significant nosocomial pathogen worldwide. The rise of A. baumannii was due to its multi-drug resistance (MDR), while it was difficult to treat multi-drug resistant A. baumannii with antibiotics, especially in pediatric patients for the therapeutic options with antibiotics were quite limited in pediatric patients. A. baumannii ST208 was identified as predominant sequence type of carbapenem resistant A. baumannii in the United States and China. As we knew, there was no complete genome sequence reproted for A. baumannii ST208, although several whole genome shotgun sequences had been reported. Here, we sequenced the 4087-kilobase (kb) chromosome and 112-kb plasmid of A. baumannii XH386 (ST208), which was isolated from a pediatric hospital in China. The genome of A. baumannii XH386 contained 3968 protein-coding genes and 94 RNA-only encoding genes. Genomic analysis and Minimum inhibitory concentration assay showed that A. baumannii XH386 was multi-drug resistant strain, which showed resistance to most of antibiotics, except for tigecycline. The data may be accessed via the GenBank accession number CP010779 and CP010780.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.