X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Still Something to Discover: Novel Insights into Escherichia coli Phage Diversity and Taxonomy.

The aim of this study was to gain further insight into the diversity of Escherichia coli phagesfollowed by enhanced work on taxonomic issues in that field. Therefore, we present the genomiccharacterization and taxonomic classification of 50 bacteriophages against E. coli isolated fromvarious sources, such as manure or sewage. All phages were examined for their host range on a setof different E. coli strains, originating, e.g., from human diagnostic laboratories or poultry farms.Transmission electron microscopy revealed a diversity of morphotypes (70% Myo-, 22% Sipho-, and8% Podoviruses), and genome sequencing resulted in genomes sizes from ~44 to ~370 kb.Annotation and comparison with…

Read More »

Tuesday, April 21, 2020

Detection of VIM-1-Producing Enterobacter cloacae and Salmonella enterica Serovars Infantis and Goldcoast at a Breeding Pig Farm in Germany in 2017 and Their Molecular Relationship to Former VIM-1-Producing S. Infantis Isolates in German Livestock Production.

In 2011, VIM-1-producing Salmonella enterica serovar Infantis and Escherichia coli were isolated for the first time in four German livestock farms. In 2015/2016, highly related isolates were identified in German pig production. This raised the issue of potential reservoirs for these isolates, the relation of their mobile genetic elements, and potential links between the different affected farms/facilities. In a piglet-producing farm suspicious for being linked to some blaVIM-1 findings in Germany, fecal and environmental samples were examined for the presence of carbapenemase-producing Enterobacteriaceae and Salmonella spp. Newly discovered isolates were subjected to Illumina whole-genome sequencing (WGS) and S1 pulsed-field gel…

Read More »

Tuesday, April 21, 2020

An ADAMTS3 missense variant is associated with Norwich Terrier upper airway syndrome.

In flat-faced dog breeds, air resistance caused by skull conformation is believed to be a major determinant of Brachycephalic Obstructive Airway Syndrome (BOAS). The clinical presentation of BOAS is heterogeneous, suggesting determinants independent of skull conformation contribute to airway disease. Norwich Terriers, a mesocephalic breed, are predisposed to Upper Airway Syndrome (UAS), a disease whose pathological features overlap with BOAS. Our health screening clinic examined and scored the airways of 401 Norwich terriers by laryngoscopy. Genome-wide association analyses of UAS-related pathologies revealed a genetic association on canine chromosome 13 (rs9043975, p = 7.79×10-16). Whole genome resequencing was used to identify…

Read More »

Friday, July 19, 2019

A comparative analysis of methylome profiles of Campylobacter jejuni sheep abortion isolate and gastroenteric strains using PacBio data.

Campylobacter jejuni is a leading cause of human gastrointestinal disease and small ruminant abortions in the United States. The recent emergence of a highly virulent, tetracycline-resistant C. jejuni subsp. jejuni sheep abortion clone (clone SA) in the United States, and that strain’s association with human disease, has resulted in a heightened awareness of the zoonotic potential of this organism. Pacific Biosciences’ Single Molecule, Real-Time sequencing technology was used to explore the variation in the genome-wide methylation patterns of the abortifacient clone SA (IA3902) and phenotypically distinct gastrointestinal-specific C. jejuni strains (NCTC 11168 and 81-176). Several notable differences were discovered that…

Read More »

Friday, July 19, 2019

The complete genome sequence of the murine pathobiont Helicobacter typhlonius.

Immuno-compromised mice infected with Helicobacter typhlonius are used to model microbially inducted inflammatory bowel disease (IBD). The specific mechanism through which H. typhlonius induces and promotes IBD is not fully understood. Access to the genome sequence is essential to examine emergent properties of this organism, such as its pathogenicity. To this end, we present the complete genome sequence of H. typhlonius MIT 97-6810, obtained through single-molecule real-time sequencing.The genome was assembled into a single circularized contig measuring 1.92 Mbp with an average GC content of 38.8%. In total 2,117 protein-encoding genes and 43 RNA genes were identified. Numerous pathogenic features…

Read More »

Friday, July 19, 2019

Large deletions at the SHOX locus in the pseudoautosomal region are associated with skeletal atavism in Shetland ponies.

Skeletal atavism in Shetland ponies is a heritable disorder characterized by abnormal growth of the ulna and fibula that extend the carpal and tarsal joints, respectively. This causes abnormal skeletal structure, impaired movements, and affected foals are usually euthanized. In order to identify the causal mutation we subjected six confirmed Swedish cases and a DNA pool consisting of 21 control individuals to whole genome resequencing. We screened for polymorphisms where the cases and the control pool were fixed for opposite alleles and observed this signature for only 25 SNPs, most of which were scattered on genome assembly unassigned scaffolds. Read…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Yersinia ruckeri strain CSF007-82, etiologic agent of red mouth disease in salmonid fish.

We present the complete, closed, and finished chromosomal and extrachromosomal genome sequences of Yersinia ruckeri strain CSF007-82, the etiologic agent of enteric red mouth disease in salmonid fish. The chromosome is 3,799,036 bp with a G+C content of 47.5% and encodes 3,530 predicted coding sequences (CDS), 7 ribosomal operons, and 80 tRNAs. Copyright © 2015 Nelson et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of the fish pathogen Flavobacterium psychrophilum ATCC 49418(T.).

Flavobacterium psychrophilum is the causative agent of bacterial cold water disease and rainbow trout fry mortality syndrome in salmonid fishes and is associated with significant losses in the aquaculture industry. The virulence factors and molecular mechanisms of pathogenesis of F. psychrophilum are poorly understood. Moreover, at the present time, there are no effective vaccines and control using antimicrobial agents is problematic due to growing antimicrobial resistance and the fact that sick fish don’t eat. In the hopes of identifying vaccine and therapeutic targets, we sequenced the genome of the type strain ATCC 49418 which was isolated from the kidney of…

Read More »

Sunday, July 7, 2019

Sequence analysis of Staphylococcus hyicus ATCC 11249T, an etiological agent of exudative epidermitis in swine, reveals a type VII secretion system locus and a novel 116-kilobase genomic island harboring toxin-encoding genes.

Staphylococcus hyicus is the primary etiological agent of exudative epidermitis in swine. Analysis of the complete genome sequence of the type strain revealed a locus encoding a type VII secretion system and a large chromosomal island harboring the genes encoding exfoliative toxin ExhA and an EDIN toxin homolog. Copyright © 2015 Calcutt et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Actinobacillus equuli subspecies equuli ATCC 19392(T).

Actinobacillus equuli subsp. equuli is a member of the family Pasteurellaceae that is a common resident of the oral cavity and alimentary tract of healthy horses. At the same time, it can also cause a fatal septicemia in foals, commonly known as sleepy foal disease or joint ill disease. In addition, A. equuli subsp. equuli has recently been reported to act as a primary pathogen in breeding sows and piglets. To better understand how A. equuli subsp. equuli can cause disease, the genome of the type strain of A. equuli subsp. equuli, ATCC 19392(T), was sequenced using the PacBio RS…

Read More »

Sunday, July 7, 2019

Complete closed genome sequences of a Mannheimia haemolytica serotype A1 leukotoxin deletion mutant and its wild-type parent strain.

Mannheimia haemolytica is a bacterial pathogen that secretes leukotoxin (LktA) which binds to leukocyte membranes via CD18, causing bacterial pneumonia in ruminants. We report the complete closed genome sequences of a leukotoxin mutant and its parent strain that are frequently used in respiratory disease studies. Copyright © 2015 Heaton et al.

Read More »

Sunday, July 7, 2019

The mitochondrial genome of a Texas outbreak strain of the cattle tick, Rhipicephalus (Boophilus) microplus, derived from whole genome sequencing Pacific Biosciences and Illumina reads.

The cattle fever tick, Rhipicephalus (Boophilus) microplus is one of the most significant medical veterinary pests in the world, vectoring several serious livestock diseases negatively impacting agricultural economies of tropical and subtropical countries around the world. In our study, we assembled the complete R. microplus mitochondrial genome from Illumina and Pac Bio sequencing reads obtained from the ongoing R. microplus (Deutsch strain from Texas, USA) genome sequencing project. We compared the Deutsch strain mitogenome to the mitogenome from a Brazilian R. microplus and from an Australian cattle tick that has recently been taxonomically designated as Rhipicephalus australis after previously being…

Read More »

1 2 3 6

Subscribe for blog updates:

Archives