X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Co-cultivation and transcriptome sequencing of two co-existing fish pathogens Moritella viscosa and Aliivibrio wodanis.

Aliivibrio wodanis and Moritella viscosa have often been isolated concurrently from fish with winter-ulcer disease. Little is known about the interaction between the two bacterial species and how the presence of one bacterial species affects the behaviour of the other.The impact on bacterial growth in co-culture was investigated in vitro, and the presence of A. wodanis has an inhibitorial effect on M. viscosa. Further, we have sequenced the complete genomes of these two marine Gram-negative species, and have performed transcriptome analysis of the bacterial gene expression levels from in vivo samples. Using bacterial implants in the fish abdomen, we demonstrate…

Read More »

Sunday, July 7, 2019

Paenibacillus larvae-directed bacteriophage HB10c2 and its application in American Foulbrood-affected honey bee larvae.

Paenibacillus larvae is the causative agent of American foulbrood (AFB), the most serious honey bee brood bacterial disease. We isolated and characterized P. larvae-directed bacteriophages and developed criteria for safe phage therapy. Whole-genome analysis of a highly lytic virus of the family Siphoviridae (HB10c2) provided a detailed safety profile and uncovered its lysogenic nature and a putative beta-lactamase-like protein. To rate its antagonistic activity against the pathogens targeted and to specify potentially harmful effects on the bee population and the environment, P. larvae genotypes ERIC I to IV, representatives of the bee gut microbiota, and a broad panel of members…

Read More »

Sunday, July 7, 2019

Complete genome sequence of an Edwardsiella piscicida-like species isolated from diseased grouper in Israel.

The Edwardsiella piscicida-like sp. is a Gram-negative facultative anaerobe that causes disease in some fish species. We report here the complete genome sequence of a virulent isolate from a diseased white grouper (Epinephelus aeneus) raised on the Red Sea in Israel, which contains a chromosome of 3,934,167 bp and no plasmids. Copyright © 2015 Reichley et al.

Read More »

Sunday, July 7, 2019

Acetylcholinesterase 1 in populations of organophosphate-resistant North American strains of the cattle tick, Rhipicephalus microplus (Acari: Ixodidae).

Rhipicephalus microplus, the cattle fever tick, is a global economic problem to the cattle industry due to direct infestation of cattle and pathogens transmitted during feeding. Cattle fever tick outbreaks continue to occur along the Mexico-US border even though the tick has been eradicated from the USA. The organophosphate (OP) coumaphos targets acetylcholinesterase (AChE) and is the approved acaricide for eradicating cattle fever tick outbreaks. There is evidence for coumaphos resistance developing in cattle ticks in Mexico, and OP-resistant R. microplus ticks were discovered in outbreak populations of Texas in 2005. The molecular basis of coumaphos resistance is not known,…

Read More »

Sunday, July 7, 2019

Complete genome and plasmid sequences of three Canadian strains of Salmonella enterica subsp. enterica serovar Enteritidis belonging to phage types 8, 13, and 13a.

Salmonella enterica subsp. enterica serovar Enteritidis is a prominent cause of human salmonellosis frequently linked to poultry products. In Canada, S. Enteritidis phage types 8, 13, and 13a predominate among both clinical and poultry isolates. Here, we report the complete genome and plasmid sequences of poultry isolates of these three phage types. Copyright © 2015 Rehman et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of an Edwardsiella piscicida-like species, recovered from tilapia in the United States.

An Edwardsiella piscicida-like species is a Gram-negative facultative anaerobe that causes disease in some fish species. In this report, we present the complete and annotated genome of isolate LADL05-105, recovered from cultured tilapia reared in Louisiana, which contains a chromosome of 4,142,037 bp and no plasmids. Copyright © 2015 Reichley et al.

Read More »

Sunday, July 7, 2019

Genome analysis of Staphylococcus agnetis, an agent of lameness in broiler chickens.

Lameness in broiler chickens is a significant animal welfare and financial issue. Lameness can be enhanced by rearing young broilers on wire flooring. We have identified Staphylococcus agnetis as significantly involved in bacterial chondronecrosis with osteomyelitis (BCO) in proximal tibia and femorae, leading to lameness in broiler chickens in the wire floor system. Administration of S. agnetis in water induces lameness. Previously reported in some cases of cattle mastitis, this is the first report of this poorly described pathogen in chickens. We used long and short read next generation sequencing to assemble single finished contigs for the genome and a…

Read More »

Sunday, July 7, 2019

Bovine NK-lysin: Copy number variation and functional diversification.

NK-lysin is an antimicrobial peptide and effector protein in the host innate immune system. It is coded by a single gene in humans and most other mammalian species. In this study, we provide evidence for the existence of four NK-lysin genes in a repetitive region on cattle chromosome 11. The NK2A, NK2B, and NK2C genes are tandemly arrayed as three copies in ~30-35-kb segments, located 41.8 kb upstream of NK1. All four genes are functional, albeit with differential tissue expression. NK1, NK2A, and NK2B exhibited the highest expression in intestine Peyer’s patch, whereas NK2C was expressed almost exclusively in lung.…

Read More »

Sunday, July 7, 2019

Complete closed genome sequences of three Bibersteinia trehalosi nasopharyngeal isolates from cattle with shipping fever.

Bibersteinia trehalosi is a respiratory pathogen affecting cattle and related ruminants worldwide. B. trehalosi is closely related to Mannheimia haemolytica and is often associated with bovine respiratory disease complex (BRDC), a polymicrobial multifactorial disease. We present three complete closed genome sequences of this species generated using an automated assembly pipeline.

Read More »

1 2 3 4 6

Subscribe for blog updates:

Archives