X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification.

High-throughput sequencing of full-length transcripts using long reads has paved the way for the discovery of thousands of novel transcripts, even in well-annotated mammalian species. The advances in sequencing technology have created a need for studies and tools that can characterize these novel variants. Here, we present SQANTI, an automated pipeline for the classification of long-read transcripts that can assess the quality of data and the preprocessing pipeline using 47 unique descriptors. We apply SQANTI to a neuronal mouse transcriptome using Pacific Biosciences (PacBio) long reads and illustrate how the tool is effective in characterizing and describing the composition of…

Read More »

Sunday, September 22, 2019

Integrated DNA methylome and transcriptome analysis reveals the ethylene-induced flowering pathway genes in pineapple.

Ethylene has long been used to promote flowering in pineapple production. Ethylene-induced flowering is dose dependent, with a critical threshold level of ethylene response factors needed to trigger flowering. The mechanism of ethylene-induced flowering is still unclear. Here, we integrated isoform sequencing (iso-seq), Illumina short-reads sequencing and whole-genome bisulfite sequencing (WGBS) to explore the early changes of transcriptomic and DNA methylation in pineapple following high-concentration ethylene (HE) and low-concentration ethylene (LE) treatment. Iso-seq produced 122,338 transcripts, including 26,893 alternative splicing isoforms, 8,090 novel transcripts and 12,536 candidate long non-coding RNAs. The WGBS results suggested a decrease in CG methylation and…

Read More »

Sunday, September 22, 2019

A single-molecule long-read survey of the human transcriptome.

Global RNA studies have become central to understanding biological processes, but methods such as microarrays and short-read sequencing are unable to describe an entire RNA molecule from 5′ to 3′ end. Here we use single-molecule long-read sequencing technology from Pacific Biosciences to sequence the polyadenylated RNA complement of a pooled set of 20 human organs and tissues without the need for fragmentation or amplification. We show that full-length RNA molecules of up to 1.5 kb can readily be monitored with little sequence loss at the 5′ ends. For longer RNA molecules more 5′ nucleotides are missing, but complete intron structures…

Read More »

Sunday, September 22, 2019

Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings.

In eukaryotes, mechanisms such as alternative splicing (AS) and alternative translation initiation (ATI) contribute to organismal protein diversity. Specifically, splicing factors play crucial roles in responses to environment and development cues; however, the underlying mechanisms are not well investigated in plants. Here, we report the parallel employment of short-read RNA sequencing, single molecule long-read sequencing and proteomic identification to unravel AS isoforms and previously unannotated proteins in response to abscisic acid (ABA) treatment. Combining the data from the two sequencing methods, approximately 83.4% of intron-containing genes were alternatively spliced. Two AS types, which are referred to as alternative first exon…

Read More »

Sunday, September 22, 2019

High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation.

The extent to which alternative splicing and long intergenic noncoding RNAs (lincRNAs) contribute to the specialized functions of cells within an organ is poorly understood. We generated a comprehensive dataset of gene expression from individual cell types of the Arabidopsis root. Comparisons across cell types revealed that alternative splicing tends to remove parts of coding regions from a longer, major isoform, providing evidence for a progressive mechanism of splicing. Cell-type-specific intron retention suggested a possible origin for this common form of alternative splicing. Coordinated alternative splicing across developmental stages pointed to a role in regulating differentiation. Consistent with this hypothesis, distinct isoforms…

Read More »

Sunday, September 22, 2019

Full-length isoform sequencing reveals novel transcripts and substantial transcriptional overlaps in a herpesvirus.

Whole transcriptome studies have become essential for understanding the complexity of genetic regulation. However, the conventionally applied short-read sequencing platforms cannot be used to reliably distinguish between many transcript isoforms. The Pacific Biosciences (PacBio) RS II platform is capable of reading long nucleic acid stretches in a single sequencing run. The pseudorabies virus (PRV) is an excellent system to study herpesvirus gene expression and potential interactions between the transcriptional units. In this work, non-amplified and amplified isoform sequencing protocols were used to characterize the poly(A+) fraction of the lytic transcriptome of PRV, with the aim of a complete transcriptional annotation…

Read More »

Sunday, September 22, 2019

Evaluation of tools for long read RNA-seq splice-aware alignment.

High-throughput sequencing has transformed the study of gene expression levels through RNA-seq, a technique that is now routinely used by various fields, such as genetic research or diagnostics. The advent of third generation sequencing technologies providing significantly longer reads opens up new possibilities. However, the high error rates common to these technologies set new bioinformatics challenges for the gapped alignment of reads to their genomic origin. In this study, we have explored how currently available RNA-seq splice-aware alignment tools cope with increased read lengths and error rates. All tested tools were initially developed for short NGS reads, but some have…

Read More »

Sunday, September 22, 2019

A survey of transcriptome complexity in Sus scrofa using single-molecule long-read sequencing.

Alternative splicing (AS) and fusion transcripts produce a vast expansion of transcriptomes and proteomes diversity. However, the reliability of these events and the extend of epigenetic mechanisms have not been adequately addressed due to its limitation of uncertainties about the complete structure of mRNA. Here we combined single-molecule real-time sequencing, Illumina RNA-seq and DNA methylation data to characterize the landscapes of DNA methylation on AS, fusion isoforms formation and lncRNA feature and further to unveil the transcriptome complexity of pig. Our analysis identified an unprecedented scale of high-quality full-length isoforms with over 28,127 novel isoforms from 26,881 novel genes. More…

Read More »

Sunday, September 22, 2019

Transcriptional diversity during lineage commitment of human blood progenitors.

Blood cells derive from hematopoietic stem cells through stepwise fating events. To characterize gene expression programs driving lineage choice, we sequenced RNA from eight primary human hematopoietic progenitor populations representing the major myeloid commitment stages and the main lymphoid stage. We identified extensive cell type-specific expression changes: 6711 genes and 10,724 transcripts, enriched in non-protein-coding elements at early stages of differentiation. In addition, we found 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes. We demonstrated experimentally cell-specific isoform usage, identifying nuclear factor I/B (NFIB) as a regulator of megakaryocyte maturation-the…

Read More »

Sunday, September 22, 2019

Characterization of the human ESC transcriptome by hybrid sequencing.

Although transcriptional and posttranscriptional events are detected in RNA-Seq data from second-generation sequencing, full-length mRNA isoforms are not captured. On the other hand, third-generation sequencing, which yields much longer reads, has current limitations of lower raw accuracy and throughput. Here, we combine second-generation sequencing and third-generation sequencing with a custom-designed method for isoform identification and quantification to generate a high-confidence isoform dataset for human embryonic stem cells (hESCs). We report 8,084 RefSeq-annotated isoforms detected as full-length and an additional 5,459 isoforms predicted through statistical inference. Over one-third of these are novel isoforms, including 273 RNAs from gene loci that have…

Read More »

Sunday, September 22, 2019

Long-read sequencing of nascent RNA reveals coupling among RNA processing events.

Pre-mRNA splicing is accomplished by the spliceosome, a megadalton complex that assembles de novo on each intron. Because spliceosome assembly and catalysis occur cotranscriptionally, we hypothesized that introns are removed in the order of their transcription in genomes dominated by constitutive splicing. Remarkably little is known about splicing order and the regulatory potential of nascent transcript remodeling by splicing, due to the limitations of existing methods that focus on analysis of mature splicing products (mRNAs) rather than substrates and intermediates. Here, we overcome this obstacle through long-read RNA sequencing of nascent, multi-intron transcripts in the fission yeast Schizosaccharomyces pombe Most…

Read More »

Sunday, September 22, 2019

Identification of differentially expressed splice variants by the proteogenomic pipeline Splicify.

Proteogenomics, i.e. comprehensive integration of genomics and proteomics data, is a powerful approach identifying novel protein biomarkers. This is especially the case for proteins that differ structurally between disease and control conditions. As tumor development is associated with aberrant splicing, we focus on this rich source of cancer specific biomarkers. To this end, we developed a proteogenomic pipeline, Splicify, which is able to detect differentially expressed protein isoforms. Splicify is based on integrating RNA massive parallel sequencing data and tandem mass spectrometry proteomics data to identify protein isoforms resulting from differential splicing between two conditions. Proof of concept was obtained…

Read More »

Sunday, September 22, 2019

A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.

Despite the economic importance of sugarcane in sugar and bioenergy production, there is not yet a reference genome available. Most of the sugarcane transcriptomic studies have been based on Saccharum officinarum gene indices (SoGI), expressed sequence tags (ESTs) and de novo assembled transcript contigs from short-reads; hence knowledge of the sugarcane transcriptome is limited in relation to transcript length and number of transcript isoforms.The sugarcane transcriptome was sequenced using PacBio isoform sequencing (Iso-Seq) of a pooled RNA sample derived from leaf, internode and root tissues, of different developmental stages, from 22 varieties, to explore the potential for capturing full-length transcript…

Read More »

Sunday, September 22, 2019

Altered expression of the FMR1 splicing variants landscape in premutation carriers.

FMR1 premutation carriers (55-200 CGG repeats) are at risk for developing Fragile X-associated Tremor/Ataxia Syndrome (FXTAS), an adult onset neurodegenerative disorder. Approximately 20% of female carriers will develop Fragile X-associated Primary Ovarian Insufficiency (FXPOI), in addition to a number of clinical problems affecting premutation carriers throughout their life span. Marked elevation in FMR1 mRNA levels have been observed with premutation alleles resulting in RNA toxicity, the leading molecular mechanism proposed for the FMR1 associated disorders observed in premutation carriers. The FMR1 gene undergoes alternative splicing and we have recently reported that the relative abundance of all FMR1 mRNA isoforms is…

Read More »

Sunday, September 22, 2019

Comprehensive profiling of rhizome-associated alternative splicing and alternative polyadenylation in moso bamboo (Phyllostachys edulis).

Moso bamboo (Phyllostachys edulis) represents one of the fastest-spreading plants in the world, due in part to its well-developed rhizome system. However, the post-transcriptional mechanism for the development of the rhizome system in bamboo has not been comprehensively studied. We therefore used a combination of single-molecule long-read sequencing technology and polyadenylation site sequencing (PAS-seq) to re-annotate the bamboo genome, and identify genome-wide alternative splicing (AS) and alternative polyadenylation (APA) in the rhizome system. In total, 145 522 mapped full-length non-chimeric (FLNC) reads were analyzed, resulting in the correction of 2241 mis-annotated genes and the identification of 8091 previously unannotated loci. Notably,…

Read More »

1 3 4 5 6 7 8

Subscribe for blog updates:

Archives